

# » Kontron User's Guide «



KTQM67/mITX



KTQM67/Flex

(Picture not available)

KTQM67/ATXP

**KTQM67 Users Guide** 

KTD-N0819-B

## **Document revision history.**

| Revision | Date                      | Ву  | Comment                          |
|----------|---------------------------|-----|----------------------------------|
|          |                           |     |                                  |
| В        | Aug 29 <sup>th</sup> 2011 | MLA | Preliminary version – added info |
| Α        | Aug 16 <sup>th</sup> 2011 | MLA | Preliminary version – added info |
| 0        | Jun 8 <sup>th</sup> 2011  | MLA | Preliminary version              |

## **Copyright Notice:**

Copyright © 2011, KONTRON Technology A/S, ALL RIGHTS RESERVED.

No part of this document may be reproduced or transmitted in any form or by any means, electronically or mechanically, for any purpose, without the express written permission of KONTRON Technology A/S.

## **Trademark Acknowledgement:**

Brand and product names are trademarks or registered trademarks of their respective owners.

### **Disclaimer:**

KONTRON Technology A/S reserves the right to make changes, without notice, to any product, including circuits and/or software described or contained in this manual in order to improve design and/or performance.

Specifications listed in this manual are subject to change without notice. KONTRON Technology assumes no responsibility or liability for the use of the described product(s), conveys no license or title under any patent, copyright, or mask work rights to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described in this manual are for illustration purposes only. KONTRON Technology A/S makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

## **Life Support Policy**

KONTRON Technology'S PRODUCTS ARE NOT FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF THE GENERAL MANAGER OF KONTRON Technology A/S.

#### As used herein:

Life support devices or systems are devices or systems which, (a) are intended for surgical implant into body, or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in significant injury to the user.

A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

# **KONTRON Technology Technical Support and Services**

If you have questions about installing or using your KONTRON Technology Product, check this User's Manual first – you will find answers to most questions here. To obtain support, please contact your local Distributor or Field Application Engineer (FAE).

Before Contacting Support: Please be prepared to provide as much information as possible:

- CPU Board
  - 1. Type.
  - 2. Part Number (find PN on label)
  - 3. Serial Number if available (find SN on label)
- Configuration
  - 1. CPU Type, Clock speed
  - 2. DRAM Type and Size.
  - 3. BIOS Revision (Find the Version Info in the BIOS Setup).
  - 4. BIOS Settings different than Default Settings (Refer to the BIOS Setup Section).
- System
  - 1. O/S Make and Version.
  - 2. Driver Version numbers (Graphics, Network, and Audio).
  - 3. Attached Hardware: Harddisks, CD-rom, LCD Panels etc.

## **Warranty**

KONTRON Technology warrants its products to be free from defects in material and workmanship during the warranty period. If a product proves to be defective in material or workmanship during the warranty period, KONTRON Technology will, at its sole option, repair or replace the product with a similar product.

Replacement Product or parts may include remanufactured or refurbished parts or components.

#### The warranty does not cover:

- 1. Damage, deterioration or malfunction resulting from:
  - A. Accident, misuse, neglect, fire, water, lightning, or other acts of nature, unauthorized product modification, or failure to follow instructions supplied with the product.
  - B. Repair or attempted repair by anyone not authorized by KONTRON Technology.
  - C. Causes external to the product, such as electric power fluctuations or failure.
  - D. Normal wear and tear.
- E. Any other causes which does not relate to a product defect.
- 2. Removal, installation, and set-up service charges.

#### **Exclusion of damages:**

KONTRON TECHNOLOGY LIABILITY IS LIMITED TO THE COST OF REPAIR OR REPLACEMENT OF THE PRODUCT. KONTRON TECHNOLOGY SHALL NOT BE LIABLE FOR:

- DAMAGE TO OTHER PROPERTY CAUSED BY ANY DEFECTS IN THE PRODUCT, DAMAGES BASED UPON INCONVENIENCE, LOSS OF USE OF THE PRODUCT, LOSS OF TIME, LOSS OF PROFITS, LOSS OF BUSINESS OPPORTUNITY, LOSS OF GOODWILL, INTERFERENCE WITH BUSINESS RELATIONSHIPS, OR OTHER COMMERCIAL LOSS, EVEN IF ADVISED OF THEIR POSSIBILITY OF SUCH DAMAGES.
- 2. ANY OTHER DAMAGES, WHETHER INCIDENTAL, CONSEQUENTIAL OR OTHERWISE.
- 3. ANY CLAIM AGAINST THE CUSTOMER BY ANY OTHER PARTY.

## **Contents**

| Intro | oduction                          | 7  |
|-------|-----------------------------------|----|
| 1     | Installation procedure            | 8  |
| 1.1   | Installing the board              | 8  |
| 1.2   | Requirement according to IEC60950 | 9  |
| 2     | System Specification              | 10 |
| 2.1   | Component main data               | 10 |
| 2.2   | System overview                   | 14 |
| 2.3   | Processor Support Table           | 15 |
| 2.4   | System Memory support             |    |
| 2.5   | KTQM67 Graphics Subsystem         | 18 |
| 2.5.1 | Intel® HD Graphics 3000           |    |
| 2.6   | Power Consumption                 | 19 |
| 3     | Connector Locations               | 22 |
| 3.1   | KTQM67/mITX – frontside           | 22 |
| 3.2   | KTQM67/mITX – IO Bracket area     | 23 |
| 3.3   | KTQM67/mITX - backside            | 23 |
| 3.4   | KTQM67/Flex                       | 24 |
| 3.5   | KTQM67/Flex - backside            | 25 |
| 3.6   | KTQM67/ATXP                       | 26 |
| 4     | Connector Definitions             | 27 |
| 5     | IO-Area Connectors                | 28 |
| 5.1   | Display connectors (IO Area)      | 28 |
| 5.1.1 | DVI Connector (DVI-I) (J41)       | 28 |
| 5.1.2 | DP Connectors (DP0/DP1) (J40/J39) | 29 |
| 5.2   | Ethernet Connectors               | 30 |
| 5.3   | USB Connectors (IO Area)          | 31 |
| 5.3.1 | USB Connector 0/1 (USB0/1)        | 31 |
| 5.3.2 | USB Connector 2/3 (USB2/3)        |    |
| 5.3.3 | USB Connector 4/5 (USB4/5)        | 32 |

| 5.4    | Audio Connector (IO Area)                          | 33 |
|--------|----------------------------------------------------|----|
| 6      | Internal Connectors                                | 34 |
| 6.1    | Power Connector (ATX/BTXPWR)                       | 34 |
| 6.2    | Fan Connectors (FAN_CPU) (J28) and (FAN_SYS) (J29) | 35 |
| 6.3    | PS/2 Keyboard and Mouse connector (KBDMSE) (J27)   | 36 |
| 6.4    | Display connectors (Internal)                      | 37 |
| 6.4.1  | eDP connector (EDP) (J38)                          | 37 |
| 6.4.2  | LVDS Flat Panel Connector (LVDS) (J20)             | 38 |
| 6.5    | SATA (Serial ATA) Disk interface (J21 – J26)       | 39 |
| 6.6    | USB Connectors (USB)                               | 40 |
| 6.6.1  | USB Connector 6/7                                  | 40 |
| 6.6.2  | USB Connector 8/9 (USB8/9) (J10)                   | 40 |
| 6.6.3  | USB Connector 10/11 (USB10/11) (J11)               |    |
| 6.6.4  | USB Connector 12/13 (USB12/13) (J12)               | 41 |
| 6.7    | Firewire/IEEE1394 connectors (J13,J14)             | 42 |
| 6.7.1  | IEEE1394 connector (IEEE1394_0) (J14)              | 42 |
| 6.7.2  | IEEE1394 connector (IEEE1394_1) (J13)              | 42 |
| 6.8    | Serial COM1 – COM4 Ports (J15, J16, J17, J18)      | 43 |
| 6.9    | LPT (Line Print Terminal – Parallel port) (J44)    | 44 |
| 6.10   | Audio Connectors                                   | 45 |
| 6.10.1 | 1 CDROM Audio Input (CDROM) (J3)                   | 45 |
|        | 2 Line2 and Mic2                                   |    |
| 6.10.1 | 1 Audio Header Connector (AUDIO_HEAD) (J31)        | 46 |
| 6.11   | Front Panel Connector (FRONTPNL) (J19)             | 47 |
| 6.12   | Feature Connector (FEATURE) (J30)                  | 48 |
| 6.13   | Clear CMOS Jumper (J37)                            | 50 |
| 6.14   | SPI Recover Jumper (J4)                            | 51 |
| 6.15   | SPI Connector (SPI) (J5)                           | 51 |
| 6.16   | XDP-CPU (Debug Port for CPU) (J32)                 | 52 |
| 6.17   | XDP-PCH (Debug Port for Chipset) (J33)             | 53 |
| 7      | Slot Connectors (PCIe, miniPCIe, PCI)              | 54 |
| 7.1    | PCIe Connectors                                    | 54 |
| 7.1.1  | PCI-Express x16 Connector (PCIe x16)               | 54 |
| 7.1.2  | miniPCI-Express mPCIe0 (J34)                       | 56 |
| 7.1.3  | miniPCI-Express mPCIe1 (J35)                       |    |
| 7.1.4  | PCI-Express x1 Connector (PCIe x1) (J36)           | 58 |

| 7.2   | PCI Slot Connectors PCI0 (J45), PCI1 (J48), PCI2 (J49) | 59  |
|-------|--------------------------------------------------------|-----|
| 7.2.1 | Signal Description – PCI Slot Connector                | 60  |
| 7.2.2 | KTQM67 PCI IRQ & INT routing                           | 61  |
| 8     | On-board - & mating connector types                    | .62 |
| 9     | System Resources                                       | .63 |
| 9.1   | Memory Map                                             | 63  |
| 9.2   | PCI Devices                                            | 64  |
| 9.3   | Interrupt Usage                                        | 65  |
| 9.4   | IO Map                                                 | 66  |
| 10    | BIOS                                                   | .68 |
| 11    | AMI BIOS Beep Codes                                    | .69 |
| 12    | OS Setup                                               | .70 |

## Introduction

This manual describes the KTQM67/mITX, KTQM67/Flex and KTQM67/ATXP boards made by KONTRON Technology A/S. The boards will also be denoted KTQM67 family if no differentiation is required.

The KTQM67 boards, all based on the QM67 chipset, support 2<sup>nd</sup> generation Intel® i7 -, i5 -, i3 2Core and 4Core processor and the Celeron B810 2Core, see "Processor Support Table for more specific details.

The KTQM67 family consist on members having different form factors, and the same functionality except for the functions listed in the table below.

| KTQM67 variants | Format | PCI | SODIMM Sockets | Single +12V Power Supply |
|-----------------|--------|-----|----------------|--------------------------|
| KTQM67/mITX     | mITX   | -   | 2              | Yes                      |
| KTQM67/Flex     | Flex   | 3   | 4              | No                       |
| KTQM67/ATXP     | ATX    | 6   | 4              | No                       |

Use of this Users Guide implies a basic knowledge of PC-AT hard- and software. This manual is focused on describing the KTQM67 board's special features and is not intended to be a standard PC-AT textbook.

New users are recommended to study the short installation procedure stated in the following chapter before switching-on the power.

All configuration and setup of the CPU board is either done automatically or manually by the user via the CMOS setup menus. Only exception is the Clear CMOS jumper.

## 1 Installation procedure

## 1.1 Installing the board

To get the board running, follow these steps. If the board shipped from KONTRON has already components like RAM, CPU and cooler mounted, then relevant steps below, can be skipped.

#### 1. Turn off the PSU (Power Supply Unit)



**Warning**: Turn off PSU (Power Supply Unit) completely (no mains power connected to the PSU) or leave the Power Connectors unconnected while configuring the board. Otherwise components (RAM, LAN cards etc.) might get damaged. If not using KTQM67/mITX and single 12V power input make sure PSU has 3.3V monitoring watchdog (standard ATX PSU feature), running the board without 3.3V will damage the board within minutes.

#### 2. Insert the DDR3 DIMM 204pin SODIMM module(s)

Be careful to push it in the slot(s) before locking the tabs. For a list of approved DDR3 SODIMMs contact your Distributor or FAE. See also chapter "System Memory Support".

#### 3. Install the processor

The CPU is keyed and will only mount in the CPU socket in one way. Use suitable screwdriver to open/ close the CPU socket. Refer to supported processor overview for details.

#### 4. Cooler Installation

Use heat paste or adhesive pads between CPU and cooler and connect the Fan electrically to the FAN\_CPU connector.

#### 5. Connecting Interfaces

Insert all external cables for hard disk, keyboard etc. A monitor must be connected in order to be able change CMOS settings.

#### 6. Connect and turn on PSU

Connect PSU to the board by the ATX/BTXPWR and the 4-pin ATX+12V connectors. For the KTQM67/mITX alternatively use only the 4-pin ATX+12V connector if single voltage operation (+12V +/-5%) is requested.

#### 7. Power Button

The PWRBTN\_IN must be toggled to start the Power supply; this is done by shorting pins 16 (PWRBTN\_IN) and pin 18 (GND) on the FRONTPNL connector (see Connector description). A "normally open" switch can be connected via the FRONTPNL connector.

#### 8. BIOS Setup

Enter the BIOS setup by pressing the <Del> key during boot up.

Enter Exit Menu and Load Optimal Defaults.

Refer to the "BIOS Configuration / Setup" section of this manual for details on BIOS setup.

**Note:** To clear all CMOS settings, including Password protection, move the Clear CMOS jumper in the Clear CMOS position (with or without power) for ~10 sec. This will Load Failsafe Defaults and make sure Secure CMOS is disabled.

#### 9. Mounting the board to chassis



**Warning**: When mounting the board to chassis etc. please notice that the board contains components on both sides of the PCB which can easily be damaged if board is handled without reasonable care. A damaged component can result in malfunction or no function at all.

When fixing the Motherboard on a chassis it is recommended using screws with integrated washer and having diameter of ~7mm.

Note: Do not use washers with teeth, as they can damage the PCB and may cause short circuits.

## 1.2 Requirement according to IEC60950

Users of KTQM67 family boards should take care when designing chassis interface connectors in order to fulfil the IEC60950 standard:

Page 9

When an interface/connector has a VCC (or other power) pin, which is directly connected to a power plane like the VCC plane:

To protect the external power lines of the peripheral devices, the customer has to take care about:

- That the wires have suitable rating to withstand the maximum available power.
- That the enclosure of the peripheral device fulfils the fire protecting requirements of IEC60950.

#### Lithium Battery precautions:

#### **CAUTION!**

Danger of explosion if battery is incorrectly replaced.

Replace only with same or equivalent type recommended by manufacturer.

Dispose of used batteries according to the manufacturer's instructions.

## VORSICHT!

Explosionsgefahr bei unsachgemäßem
Austausch der Batterie.
Ersatz nur durch den selben oder einen vom
Hersteller empfohlenen gleichwertigen Typ.
Entsorgung gebrauchter Batterien nach
Angaben des Herstellers.

#### ADVARSEL!

Lithiumbatteri – Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandøren.

#### **ADVARSEL**

Eksplosjonsfare ved feilaktig skifte av batteri.
Benytt samme batteritype eller en tilsvarende type anbefalt av apparatfabrikanten.
Brukte batterier kasseres i henhold til fabrikantens instruksjoner.

#### **VARNING**

Explosionsfara vid felaktigt batteribyte.
Använd samma batterityp eller en ekvivalent
typ som rekommenderas av apparattillverkaren.
Kassera använt batteri enligt fabrikantens
instruktion.

#### **VAROITUS**

Paristo voi räjähtää, jos se on virheellisesti asennettu.
Vaihda paristo ainoastaan laltevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.

## 2 System Specification

## 2.1 Component main data

The table below summarizes the features of the KTQM67/mITX, KTQM67/Flex and KTQM67/ATXP embedded motherboards.

| Form factor | KTQM67/mITX: miniITX (170,18 mm by 170,18 mm) KTQM67/Flex: Flex-ATX (190,5 mm by 228,6 mm) KTQM67/ATXP: ATX (190,5 mm by 304,0 mm)                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Processor   | Support the following 2nd Generation Intel® Core™ (Sandy Bridge M) and Intel® Celeron® processors via Socket G2 (rPGA 988B) ZIF Socket  Intel® Core™ i7  Intel® Core™ i5  Intel® Core™ i3  Intel® Celeron® B810  Up to 1333MHz system bus and 2/3/4/6MB internal cache.                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Memory      | <ul> <li>DDR3 SODIMM 204pin socket (2 sockets on mITX and 4 sockets on Flex/ATXP)</li> <li>Support single and dual ranks DDR3 1066/1333/1600MT/s         (PC3-8500/PC3-10600/PC3-12800)</li> <li>Support system memory from 256MB and up to 4x 8GB (2x 8GB on mITX).         Note: Less than 4GB displayed in System Properties using 32bit OS         (Shared Video Memory/PCI resources is subtracted)</li> <li>ECC not supported (PGA processors do not support ECC)</li> </ul>                                                               |  |  |  |  |  |  |
| Chipset     | Intel QM67 PCH (Platform Controller Hub)  Intel ® VT-d (Virtualisation Technology for Directed I/O)  Intel ® TXT (Trusted Execution Technology)  Intel ® vPRO  Intel ® AMT (Active Management Technology) version 7  Intel ® AT (Anti-Theft Technology)  Intel ® HD Audio Technology  Intel ® RST (Rapid Storage Technology)  Intel ® RRT (Rapid Recover Technology)  SATA (Serial ATA) 6Gb/s and 3Gb/s.  USB revision 2.0  PCI Express revision 2.0  ACPI 3.0b compliant  Dual Display support (Dual Graphic Pipes)  Blue-ray HD video playback |  |  |  |  |  |  |
| Security    | Intel® Integrated TPM 1.2 support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Management  | Intel® Active Management Technology (Intel® AMT) 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Audio       | <ul> <li>Audio, 7.1 Channel High Definition Audio Codec using the VIA 1708B codec</li> <li>Line-out</li> <li>Line-in</li> <li>Surround output: SIDE, LFE, CEN, BACK and FRONT</li> <li>Microphone: MIC1 and MIC2</li> <li>CDROM in</li> <li>SPDIF (electrical Interface only)</li> <li>On-board speaker (Electromagnetic Sound Generator like Hycom HY-05LF)</li> </ul>                                                                                                                                                                          |  |  |  |  |  |  |

| Video                     | Intel ® i3, i5 or i7 processor supports Intel ® HD Graphics 3000. Intel ® Celeron ® Processor B810 supports Intel ® HD Graphics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | eDP (Embedded DisplayPort) directly from processor. Analogue VGA and digital display ports (DVI, 2x DP, LVDS) via the Mobile Intel ® QM67 Chipset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           | <ul> <li>VGA (analogue panel) via DVI-I (sharing DVI-I connector with DVI-D)</li> <li>DVI-D (sharing DVI-I connector with analogue VGA)</li> <li>DP (DisplayPorts) dual, comply with DisplayPort 1.1a specification.</li> <li>LVDS panel support up to 24 bit, 2 pixels/clock and 1920x1200.</li> <li>HDMI panel support via DP to HDMI Adapter Converter.</li> <li>Second VGA panel support via DP to VGA Adapter Converter</li> <li>Second DVI panel support via DP to DVI Adapter Converter</li> <li>Dual independent pipes for Mirror and Dual independent display support (exception is combination LVDS and eDP)</li> </ul>                                                                                                                                                                                                                                                                                |
| I/O Control               | Via ITE IT8516E Embedded Controller and Winbond W83627DHG I/O Controller (both via LPC Bus interface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Peripheral<br>interfaces  | <ul> <li>Six USB 2.0 ports on I/O area</li> <li>Eight USB 2.0 ports on internal pinrows</li> <li>Two IEEE 1394a-2000 (up to 400M bits/s) on internal pinrows</li> <li>Four Serial ports (RS232) on internal pinrows</li> <li>LPT via single in line connector</li> <li>Two Serial ATA-600 IDE interfaces</li> <li>Four Serial ATA-300 IDE interfaces</li> <li>RAID 0/1/5/10 support</li> <li>mSATA via mPCIe_0 connector</li> <li>PS/2 keyboard and mouse ports via pinrow</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LAN<br>Support            | <ul> <li>1x 10/100/1000Mbits/s LAN (ETHER1) using Intel® Lewisville 82579LM Gigabit PHY connected to GM67 supporting AMT 7.0</li> <li>2x 10/100/1000Mbits/s LAN (ETHER2/ETHER3)using Intel® Hartwell 82574L PCI Express controllers</li> <li>PXE Netboot supported.</li> <li>Wake On LAN (WOL) supported</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Expansion<br>Capabilities | <ul> <li>PCI Bus routed to PCI slot(s) (PCI Local Bus Specification Revision 3.0, 33MHz)         <ul> <li>KTQM67/mITX None.</li> <li>KTQM67/Flex: 3</li> <li>KTQM67/ATXP: 6</li> </ul> </li> <li>PCI-Express slot(s) (PCIe 2.0), for all KTQM67 family members:         <ul> <li>1 slot PCIe x16</li> <li>1 slot PCIe x1</li> <li>2 slot miniPCI-Express</li> </ul> </li> <li>SMBus, compatible with ACCES BUS and I2C BUS, (via Feature connector)</li> <li>SPI bus routed to SPI connector</li> <li>DDC Bus routed to DVI-I connector</li> <li>18 x GPIOs (General Purpose I/Os), (via Feature connector)</li> <li>DAC, ADC, PWM and TIMER (Multiplexed), (via Feature connector)</li> <li>WAKE UP / Interrupt Inputs (Multiplexed), (via Feature connector)</li> <li>3 Wire Bus for GPIO Expansion (up to 152 GPIOs), (via Feature connector)</li> <li>8 bit Timer output, (via Feature connector)</li> </ul> |

Page 12

| Hardware<br>Monitor<br>Subsystem | <ul> <li>Smart Fan control system, support Thermal® and Speed® cruise for three onboard Fan control connectors: FAN_CPU, FAN_SYS and FEATURE (AUXFAN in BIOS)</li> <li>Three thermal inputs: CPU die temperature, System temperature and External temperature input routed to FEATURE connector. (Precision +/- 3°C)</li> <li>Voltage monitoring</li> <li>Intrusion (Case Open) detect input, (via Feature connector)</li> <li>Sleep S5# Indication, (via Feature connector)</li> <li>System Powergood Signal, (via Feature connector)</li> </ul> |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power<br>Supply Unit             | ATX/BTX (w. ATX+12V) PSU for full PCI/PCIe load. Alternatively (mITX version only): +12V single supply via ATX+12V (4-pole) connector, but with limitation to power load (especially +5V for USB).                                                                                                                                                                                                                                                                                                                                                |
| Battery                          | Exchangeable 3.0V Lithium battery for on-board Real Time Clock and CMOS RAM.  Manufacturer Panasonic / Part-number CR-2032L/BN, CR2032NL/LE or CR-2032L/BE.  Approximate TBD years retention.  Current draw is TBDµA when PSU is disconnected.  CAUTION: Danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer.  Dispose of used batteries according to the manufacturer's instructions.                                                                      |
| BIOS                             | <ul> <li>Kontron Technology / AMI BIOS (EFI core version)</li> <li>Support for ACPI 3.0 ( Advanced Configuration and Power Interface), Plug &amp; Play         <ul> <li>Suspend (S1 mode)</li> <li>Suspend To Ram (S3 mode)</li> <li>Suspend To Disk (S4 mode)</li> </ul> </li> <li>"Always On" BIOS power setting</li> <li>RAID Support (RAID modes 0,1, 5 and 10)</li> </ul>                                                                                                                                                                    |
| Operating<br>Systems<br>Support  | <ul> <li>WinXP</li> <li>Windows 7</li> <li>Linux</li> <li>VxWorks</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Environmental Conditions

#### Operating:

0°C – 60°C operating temperature (forced cooling). It is the customer's responsibility to provide sufficient airflow around each of the components to keep them within allowed temperature range.

10% - 90% relative humidity (non-condensing)

#### Storage:

-20°C – 70°C; lower limit of storage temperature is defined by specification restriction of on-board CR2032 battery. Board with battery has been verified for storage temperature down to -40°C by Kontron.

5% - 95% relative humidity (non-condensing)

#### Electro Static Discharge (ESD) / Radiated Emissions (EMI): (Pending)

All Peripheral interfaces intended for connection to external equipment are ESD/EMI protected.

EN 61000-4-2:2000 ESD Immunity

EN55022:1998 class B Generic Emission Standard.

Safety: (Pending)

IEC 60950-1: 2005, 2<sup>nd</sup> Edition

UL 60950-1

CSA C22.2 No. 60950-1

Product Category: Information Technology Equipment Including Electrical

**Business Equipment** 

Product Category CCN: NWGQ2, NWGQ8

File number: E194252

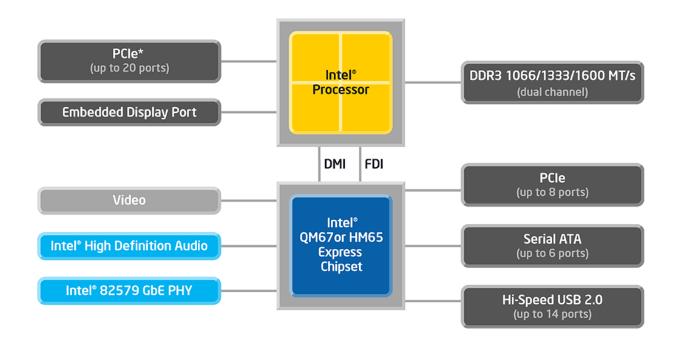
#### **Theoretical MTBF:**

TBD / TBD hours @ 40°C / 60°C for the KTQM67/mITX TBD / TBD hours @ 40°C / 60°C for the KTQM67/Flex TBD / TBD hours @ 40°C / 60°C for the KTQM67/ATXP

#### Restriction of Hazardous Substances (RoHS):

All boards in the KTQM67 family are RoHS compliant.

#### Capacitor utilization:


No Tantalum capacitors on board

Only Japanese brand Solid capacitors rated for 100 °C used on board


## 2.2 System overview

The block diagram below shows the architecture and main components of the KTQM67. The key component on the board is the Intel<sup>®</sup> QM67 (Cougar Point) Mobile Express Chipset.

Some components (PCI/PCIe/miniPCIe slots) are optional depending on board type.



More detailed block diagram on next page.



## **Processor Support Table**

The KTQM67 is designed to support the following PGA 988 processors (up to 60W power consumption):

2<sup>nd</sup> generation Intel® Core™ i7 processor Extreme Edition

2<sup>nd</sup> generation Intel® Core™ i5 processor

2<sup>nd</sup> generation Intel® Core™ i3 processor

Intel® Celeron® processor



In the following list you will find all CPU's supported by the chipset in according to Intel but also other CPU's if successfully tested.

Embedded CPU's are indicated by green text, successfully tested CPU's are indicated by **highlighted** text, successfully tested embedded CPU's are indicated by **green and highlighted** text and failed CPU's are indicated by **red** text.

Some processors in the list are distributed from Kontron, those CPU's are marked by an \* (asterisk). However please notice that this marking is only guide line and maybe not fully updated.

| Processor<br>Brand | Clock<br>Speed<br>[GHz] | Turbo<br>Speed<br>[GHz] | Cores /<br>Threads | Bus Speed<br>[MHz] | Cache<br>[MB] | CPU<br>Number | sSpec<br>no. | Step. | Thermal<br>Guideline<br>[Watt] |
|--------------------|-------------------------|-------------------------|--------------------|--------------------|---------------|---------------|--------------|-------|--------------------------------|
| Core™ i7           | 2.7                     | 3.4                     | 2/4                | 1066/1333          | 4             | 2620M         | SR03F        | J1    | 35                             |
|                    | 2.5                     | 3.5                     | 4/8                | 1066/1333/1600     | 8             | 2920XM        | SR02E        | D2    | 55                             |
|                    | 2.3                     | 3.4                     | 4/8                | 1066/1333/1600     | 8             | 2820QM        | SR012        | D2    | 45                             |
|                    | 2.2                     | 3.4                     | 4/8                | 1066/1333/1600     | 6             | 2720QM        | SR014        | D2    | 45                             |
|                    | 2.1                     | 3.0                     | 4/8                | 1066/1333/1600     | 6             | 2710QE        | SR02T        | D2    | 45                             |
|                    | 2.0                     | 2.9                     | 4/8                | 1066/1333          | 6             | 2630QM        | SR02Y        | D2    | 45                             |
|                    |                         |                         |                    |                    |               |               |              |       |                                |
| Core™ i5           | 2.6                     | 3.3                     | 2/4                | 1066/1333          | 3             | 2540M         | SR044        | J1    | 35                             |
|                    | 2.5                     | 3.2                     | 2/4                | 1066/1333          | 3             | 2520M         | SR075        | J1    | 35                             |
|                    | 2.5                     | 3.1                     | 2/4                | 1066/1333          | 3             | 2510E         | SR02U        | D2    | 35                             |
|                    | 2.3                     | 2.9                     | 2/4                | 1066/1333          | 3             | 2410M         | SR04B        | J1    | 35                             |
|                    |                         |                         |                    |                    |               |               |              |       |                                |
| Core™ i3           | 2.1                     | -                       | 2/4                | 1066/1333          | 3             | 2310M         | SR04R        | J1    | 35                             |
|                    |                         |                         |                    |                    |               |               |              |       |                                |
| Celeron®           | 1.60                    | -                       | 2/2                | 1066/1333          | 2             | B810          | SR088        | Q0    | 35                             |
|                    |                         |                         |                    |                    |               |               |              |       |                                |

**Note**: Sufficient cooling must be applied to the CPU in order to remove the effect as listed in above table (Thermal Guideline). The sufficient cooling is also depending on the maximum (worst-case) ambient operating temperature and the actual load of processor.

The Kontron PN 1044-9447 is "Active Cooler for KTQM67" capable of being used for processors having Thermal Guideline up to 45W, fully loaded and at ambient temperature up to 60°C.



All the processors in the list above, inclusive the Celeron processor, are supporting the Enhanced Intel® SpeedStep® which is improved SpeedStep technology for faster transition between voltage (power saving states) and frequency states with the result of improved power/performance balance.

Intel® Turbo Boost Technology 2.0 is supported by i5 and i7, as indicated in above list of processors, and is enabling overclocking of all cores, when operated within the limits of thermal design power, temperature and current.

## 2.4 System Memory support

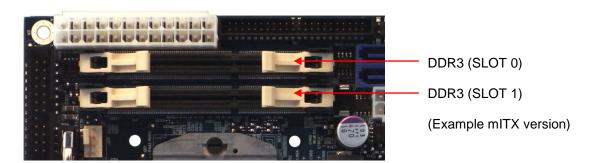
The KTQM67/mITX has two DDR3 SODIMM sockets and the KTQM67/FLEX and /ATXP have four DDR3 SODIMM sockets. The sockets support the following memory features:

- 1.5V (only) 204-pin DDR3 SODIMM with gold-plated contacts
- Single/dual rank unbuffered DDR3 1066/1333/1600MT/s (PC3-8500/PC3-10600/PC3-12800) (DDR3 1600 only supported by some i7 processors)
- From 256MB and up to 4x 8GB. (up to 2x4GB tested)
   Note: Less than 4GB displayed in System Properties using 32bit OS (Shared Video Memory/PCI resources is subtracted)
- SPD timings supported
- ECC not supported (PGA processors do not support ECC)



The installed DDR3 SODIMM should support the Serial Presence Detect (SPD) data structure. This allows the BIOS to read and configure the memory controller for optimal performance. If non-SPD memory is used, the BIOS will attempt to configure the memory settings, but performance and reliability may be impacted.

#### **Memory Operating Frequencies**


Regardless of the SODIMM type used, the memory frequency will either be equal to or less than the processor system bus frequency. For example, if DDR3 1600 memory is used with a 1333 MHz system bus frequency processor, the memory clock will operate at 666 MHz. The table below lists the resulting operating memory frequencies based on the combination of SODIMMs and processors.

| DIMM Type | Module<br>name | Memory<br>Data<br>transfers<br>[Mill/s] | Processor<br>system bus<br>frequency<br>[MHz] | Resulting<br>memory clock<br>frequency<br>[MHz] | Peak transfer<br>rate<br>[MB/s] |
|-----------|----------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------|
| DDR3 1066 | PC3-8500       | 1066                                    | 1066 or more                                  | 533                                             | 8533                            |
| DDR3 1333 | PC3-10600      | 1333                                    | 1333 or more                                  | 666                                             | 10666                           |
| DDR3 1600 | PC3-12800      | 1600                                    | 1333 max                                      | 666                                             | 10666                           |
| DDR3 1600 | PC3-12800      | 1600                                    | 1600                                          | 800                                             | 12800                           |

**Notes**: Kontron offers the following memory modules:

- P/N 1044-7740, DDR3-SODIMM, **1GB**, 204p, 1333MHZ, PC3-10600
- P/N 1044-7743, DDR3-SODIMM, **2GB**, 204p, 1066MHZ, PC3-8500
- P/N TBD, DDR3-SODIMM, **2GB**, 204p, 1333MHZ, PC3-10600
- P/N 1044-7744, DDR3-SODIMM, **4GB**, 204p, 1066MHZ, PC3-8500
- P/N TBD, DDR3-SODIMM, 4GB, 204p, 1333MHZ, PC3-10600
- P/N 1044-7745, DDR3-SODIMM, **8GB**, 204p, 1333MHZ, PC3-10600
- P/N TBD, DDR3-SODIMM, 4GB, 204P, 1600MHZ, PC3-12800

In order to support Intel ® AMT (Management Engine) SLOT 1 must always be populated.



### 2.5 KTQM67 Graphics Subsystem

The KTQM67 equipped with Intel ® i3, i5 or i7 processor, supports Intel ® HD Graphics 3000. The KTQM67 equipped Intel ® Celeron ® Processor B810, supports Intel ® HD Graphics.

All KTQM67 versions support eDP (Embedded DisplayPort) directly from processor, and analogue VGA and digital display ports (DVI, 2x DP, LVDS) via the Mobile Intel ® QM67 Chipset. The Analogue VGA and DVI-D are sharing the DVI-I connector.

The DP interface supports the DisplayPort 1.1a specification. The PCH supports High-bandwidth Digital Content Protection for high definition content playback over digital interfaces. The PCH also integrates audio codecs for audio support over DP interfaces.

Up to two displays (any two display outputs except combination LVDS and eDP) can be activated at the same time and be used to implement dual independent display support or mirror display support. PCIe and PCI (Flex/ATXP only) graphics cards can be used to replace on-board graphics or in combination with on-board graphics.

#### 2.5.1 Intel® HD Graphics 3000

Features of the Intel HD Graphics 3000 build into the i3, i5 and i7 processors, includes:

- High quality graphics engine supporting
  - DirectX10.1 and OpenGL 3.0 compliant
  - Shader Model 4.1 support 0
  - Intel ® Clear Video HD Technology 0
  - Intel ® Quick Sync Video Technology 0
  - Intel ® Flexible Display Interface (Intel ® FDI) 0
  - Core frequency of 350 1300 (Turbo) MHz 0
  - Memory Bandwidth up to 21.3 GB/s 0
  - 12 3D Execution Units 0
  - 1.62 GP/s and 2.7 GP/S pixel rate (eDP and DP outputs) 0
  - Hardware Acceleration full MPEG2, full VC-1 and full AVC 0
  - Dynamic Video Memory Technology (DVMT) support up to 1720 MB
- eDP (Embedded DisplayPort) (Not in combination with LVDS)
- LVDS panel Support, 18/24 bit colours in up to WUXGA (1920x1200 pixels) @60 Hz and SPWG (VESA) colour coding. OpenLDI (JEIDA) colour coding is 18 bit with or without Dithering. (Not in combination with eDP).
- DVI-I (Digital Visual Interface)
  - o Either DVI-A or DVI-D can be used via DVI-I connector
  - DVI-A Analogue Display (CRT)
    - 300 MHz Integrated 24-bit RAMDAC
    - Up to QXGA (2048x1536 pixels) @ 75 Hz refresh
  - DVI-D Digital Display up to WUXGA (1920x1200 pixels) @60 Hz
- DP0 and DP1
  - 24/30 bit colours in WQXGA (2560x1600 pixels) and HDCP.

Use of DP Adapter Converters can implement HDMI support or second VGA or DVI panel support.

The HDMI interface supports the HDMI 1.4a specification and includes audio codecs. However limitations to the resolution apply:

2048x1536 VGA 1920x1200 HDMI and DVI



DP to VGA DP to HDMI PN 1045-5779

DP to DVI-D PN 1045-5781 PN 1045-5780

## 2.6 Power Consumption

In order to ensure safe operation of the board, the ATX12V power supply must monitor the supply voltage and shut down if the supplies are out of range – refer to the hardware manual for the actual power supply specification. The KTQM67 board is powered through the ATX/BTX connector and ATX+12V connector. Both connectors must be used in according to the ATX12V PSU standard. However the KTQM67/mITX also supports single +12V via ATX+12V-4pin Power Connector, but power limitations apply to +5V, where 14x USB, LVDS panel or eDP panel, COM ports, LPT port and Frontpanel connector shares 9.5A.

The requirements to the supply voltages are as follows:

| Supply | Min    | Max    | Note                                                                                                                                                                 |
|--------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC3.3 | 3.168V | 3.432V | Should be $\pm 4\%$ for compliance with the ATX specification                                                                                                        |
| Vcc    | 4.75V  | 5.25V  | Should be $\pm 5\%$ for compliance with the ATX specification. Should be minimum 5.00V measured at USB connectors in order to meet the requirements of USB standard. |
| +12V   | 11.4V  | 12.6V  | Should be ±5% for compliance with the ATX specification                                                                                                              |
| –12V   | -13.2V | -10.8V | Should be $\pm 10\%$ for compliance with the ATX specification                                                                                                       |
| -5V    | -5,50V | -4.5V  | Not required for the KTQM67 boards                                                                                                                                   |
| 5VSB   | 4.75V  | 5.25V  | Should be $\pm 5\%$ for compliance with the ATX specification                                                                                                        |

#### **Total System power example**

17-2710QE @ 2.10GHz, 1x 4GB Ram, 1x 500gb HDD, 1x DVD-ROM, PSU

|                                    | Power Supplied via |          |  |  |
|------------------------------------|--------------------|----------|--|--|
| Operation                          | ATX + 12V          | 12V Only |  |  |
| Windows 7 32bit Idle               | 33W                | 36W      |  |  |
| Windows 7 32bit 3Dmark 2003        | 70W-88W            | 72W-96W  |  |  |
| Windows 7 32bit Intel Thermal Load | 111W               | 111W     |  |  |

Inclusive 19W (PSU, HDD, DVD)

#### More detailed Static Power Consumption

On the following pages the power consumption of the KTQM67 Board is measured under:

- 1- DOS, idle, mean
- 2- WindowsXP, Running 3DMARK 2001 & CPU BURN, mean
- 3- S1, mean
- 4- S3, mean
- 5- S4, mean

The following items were used in the test setup:

- Low Power Setup TBD High Power Setup TBD
- 2. 12V active cooler (Kontron PN 1044-9447).
- 3. USB Keyboard/Mouse TBD
- 4. TFT TBD
- 5. HD TBD
- 6. ATX PSU TBD
- 7. Tektronix MSO 2024
- 8. Fluke Current Probe 80i-100S AC/DC

ATX supplies

Current Probe

Tektronix MSO 2024

Note: The Power consumption of Display, HD and Fan is not included.

### Low Power Setup (TBD) results:

| DOS Idle, Mean, No external load |              |                   |
|----------------------------------|--------------|-------------------|
| Supply                           | Current draw | Power consumption |
| +12V                             |              |                   |
| +5V                              |              |                   |
| +3V3                             |              |                   |
| -12V                             |              |                   |
| 5VSB                             |              |                   |
| Total                            |              |                   |
|                                  |              |                   |

| +12V only |  |
|-----------|--|
| TILV CITY |  |

| Windows XP, mean 3DMARK2001 (Game 1 – Car Chase test ) & CPUBURN |              |                   |
|------------------------------------------------------------------|--------------|-------------------|
| Supply                                                           | Current draw | Power consumption |
| +12V                                                             |              |                   |
| +5V                                                              |              |                   |
| +3V3                                                             |              |                   |
| -12V                                                             |              |                   |
| 5VSB                                                             |              |                   |
| Total                                                            |              |                   |

## +12V only

| S1 Mode, Mean, No external load |              |                   |
|---------------------------------|--------------|-------------------|
| Supply                          | Current draw | Power consumption |
| +12V                            |              |                   |
| +5V                             |              |                   |
| +3V3                            |              |                   |
| -12V                            |              |                   |
| 5VSB                            |              |                   |
| Total                           |              |                   |

## +12V only

| S3 Mode, Mean, No external load |              |                   |
|---------------------------------|--------------|-------------------|
| Supply                          | Current draw | Power consumption |
| +12V                            |              |                   |
| +5V                             |              |                   |
| +3V3                            |              |                   |
| -12V                            |              |                   |
| 5VSB                            |              |                   |
| Total                           |              |                   |
|                                 | <u> </u>     |                   |

| 40V l-    |  |
|-----------|--|
| +12V only |  |

| S4 Mode, Mean, No external load |              |                   |
|---------------------------------|--------------|-------------------|
| Supply                          | Current draw | Power consumption |
| +12V                            |              |                   |
| +5V                             |              |                   |
| +3V3                            |              |                   |
| -12V                            |              |                   |
| 5VSB                            |              |                   |
| Total                           |              |                   |
|                                 |              |                   |
| +12V only                       |              |                   |

## **High Power Setup TBD results:**

| DOS Idle, Mean, No external load |              |                   |
|----------------------------------|--------------|-------------------|
| Supply                           | Current draw | Power consumption |
| +12V                             |              |                   |
| +5V                              |              |                   |
| +3V3                             |              |                   |
| -12V                             |              |                   |
| 5VSB                             |              |                   |
| Total                            |              |                   |
|                                  |              |                   |

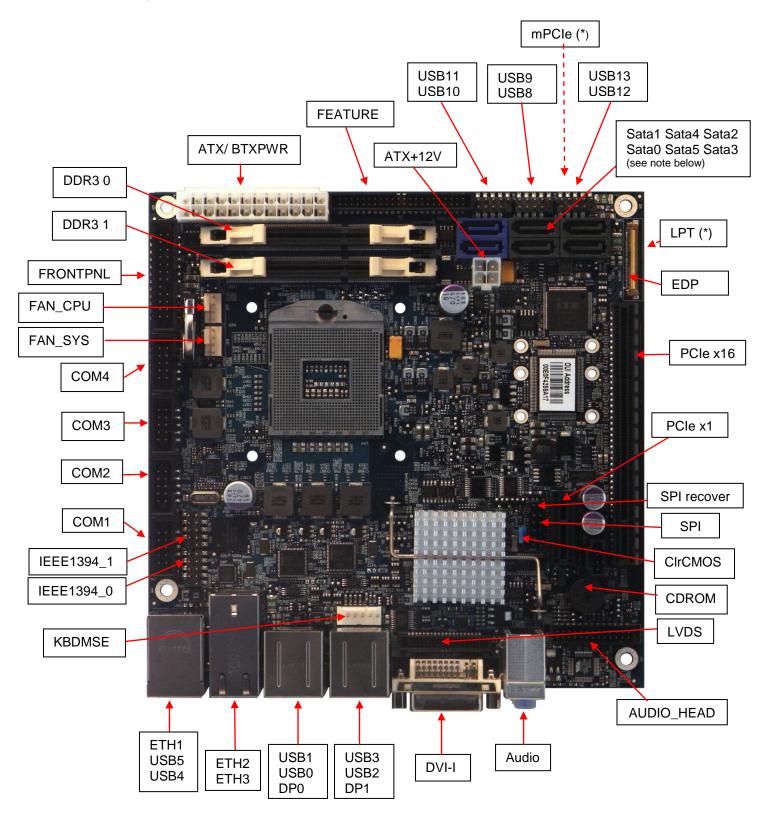
| +12V only |  |
|-----------|--|
|           |  |

| Windows XP, mean 3DMARK2001 (Game 1 – Car Chase test ) & CPUBURN |              |                   |
|------------------------------------------------------------------|--------------|-------------------|
| Supply                                                           | Current draw | Power consumption |
| +12V                                                             |              |                   |
| +5V                                                              |              |                   |
| +3V3                                                             |              |                   |
| -12V                                                             |              |                   |
| 5VSB                                                             |              |                   |
| Total                                                            |              |                   |

| +12V only |  |
|-----------|--|

| S1 Mode, Mean, No external load |              |                   |
|---------------------------------|--------------|-------------------|
| Supply                          | Current draw | Power consumption |
| +12V                            |              |                   |
| +5V                             |              |                   |
| +3V3                            |              |                   |
| -12V                            |              |                   |
| 5VSB                            |              |                   |
| Total                           |              |                   |

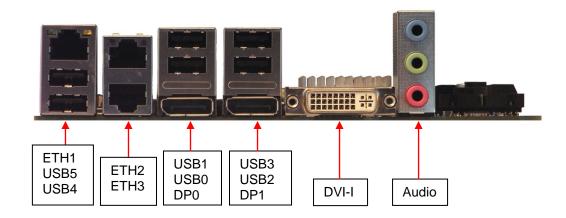
| +12V only  |  |
|------------|--|
| TIZV UIIIV |  |
|            |  |


| S3 Mode, Mean, No external load |              |                   |  |  |  |  |  |  |
|---------------------------------|--------------|-------------------|--|--|--|--|--|--|
| Supply                          | Current draw | Power consumption |  |  |  |  |  |  |
| +12V                            |              |                   |  |  |  |  |  |  |
| +5V                             |              |                   |  |  |  |  |  |  |
| +3V3                            |              |                   |  |  |  |  |  |  |
| -12V                            |              |                   |  |  |  |  |  |  |
| 5VSB                            |              |                   |  |  |  |  |  |  |
| Total                           |              |                   |  |  |  |  |  |  |
|                                 | ·            |                   |  |  |  |  |  |  |

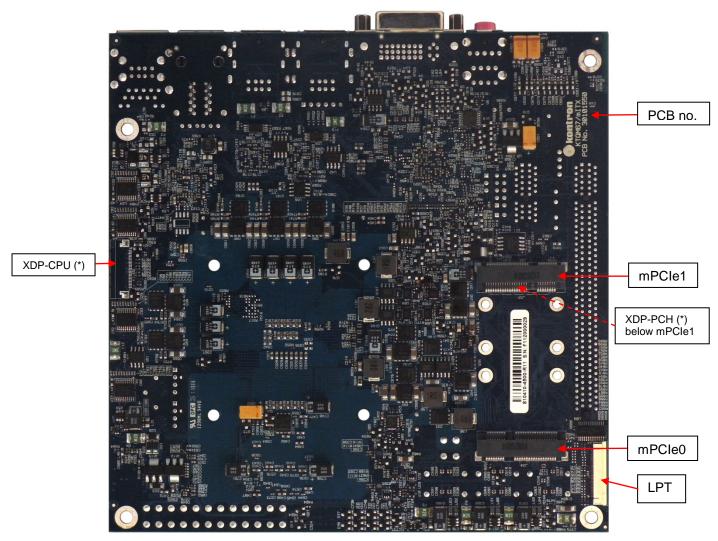
| +12V only |  |
|-----------|--|

| S4 Mode, Mean, No external load |              |                   |  |  |  |  |  |  |
|---------------------------------|--------------|-------------------|--|--|--|--|--|--|
| Supply                          | Current draw | Power consumption |  |  |  |  |  |  |
| +12V                            |              |                   |  |  |  |  |  |  |
| +5V                             |              |                   |  |  |  |  |  |  |
| +3V3                            |              |                   |  |  |  |  |  |  |
| -12V                            |              |                   |  |  |  |  |  |  |
| 5VSB                            |              |                   |  |  |  |  |  |  |
| Total                           |              |                   |  |  |  |  |  |  |
|                                 | ·            |                   |  |  |  |  |  |  |
| +12V only                       |              |                   |  |  |  |  |  |  |

## 3 Connector Locations

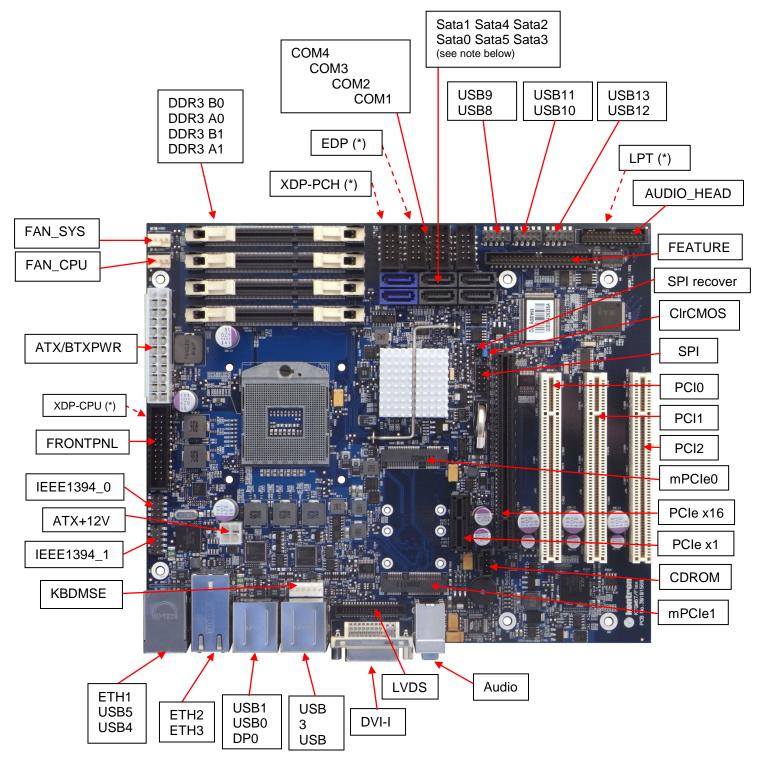

### 3.1 KTQM67/mITX - frontside




(\*) Connectors located on the backside.

Note: Sata0/Sata1support up to 6GB/s and Sata2/Sata3/Sata4/Sata5 support up to 3GB/S.

## 3.2 KTQM67/mITX - IO Bracket area

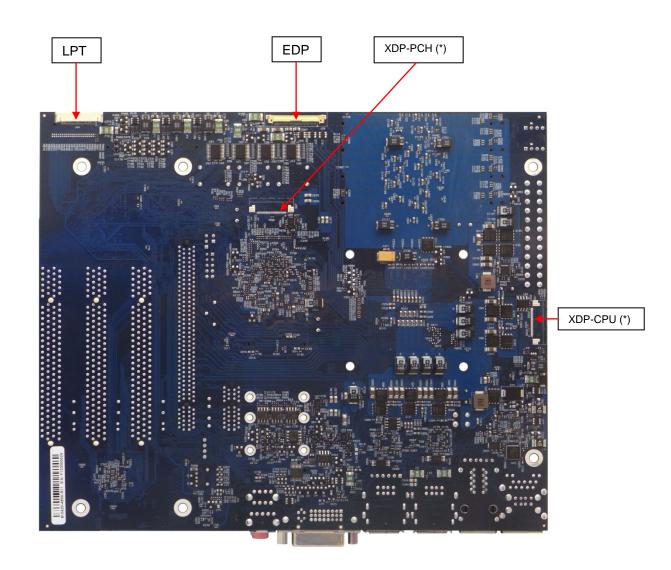



## 3.3 KTQM67/mITX - backside



(\*) The XDP connectors are not supported and not mounted in volume production.

### 3.4 KTQM67/Flex




(For picture of IO Bracket area, see previous page)

(\*) Connectors located on the backside. The XDP connectors are not supported and not mounted in volume production.

Note: Sata0/Sata1support up to 6GB/s and Sata2/Sata3/Sata4/Sata5 support up to 3GB/S.

## 3.5 KTQM67/Flex - backside



 $(\mbox{\ensuremath{^{*}}})$  The XDP connectors are not supported and not mounted in volume production.

## 3.6 KTQM67/ATXP

(NOT available yet)

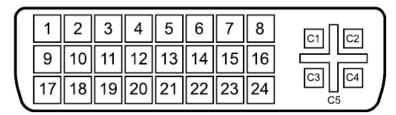
## **4 Connector Definitions**

The following sections provide pin definitions and detailed description of all on-board connectors.

The connector definitions follow the following notation:

| Column<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Pin            | Shows the pin-numbers in the connector. The graphical layout of the connector definition tables is made similar to the physical connectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Signal         | The mnemonic name of the signal at the current pin. The notation "XX#" states that the signal "XX" is active low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Туре           | Al: Analogue Input.  AO: Analogue Output.  I: Input, TTL compatible if nothing else stated.  IO: Input / Output. TTL compatible if nothing else stated.  IOT: Bi-directional tristate IO pin.  IS: Schmitt-trigger input, TTL compatible.  IOC: Input / open-collector Output, TTL compatible.  IOD: Input / Output, CMOS level Schmitt-triggered. (Open drain output)  NC: Pin not connected.  O: Output, TTL compatible.  OC: Output, open-collector or open-drain, TTL compatible.  OT: Output with tri-state capability, TTL compatible.  LVDS: Low Voltage Differential Signal.  PWR: Power supply or ground reference pins.  Ioh: Typical current in mA flowing out of an output pin through a grounded load, while the output voltage is > 2.4 V DC (if nothing else stated). |  |  |  |  |  |  |
|                | Iol: Typical current in mA flowing into an output pin from a VCC connected load, while the output voltage is < 0.4 V DC (if nothing else stated).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Pull U/D       | On-board pull-up or pull-down resistors on input pins or open-collector output pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Note           | Special remarks concerning the signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |

The abbreviation *TBD* is used for specifications which are not available yet or which are not sufficiently specified by the component vendors.


## 5 IO-Area Connectors

## 5.1 Display connectors (IO Area)

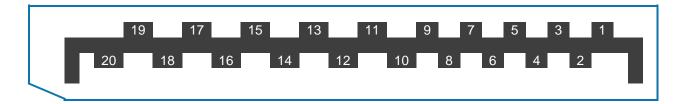
The KTQM67 family provides one on-board DVI-I port (both digital and analogue), two on-board DP's (DisplayPort), one on-board eDP (Embedded DisplayPort) and one on-board LVDS panel interface. Two graphic pipes are supported; meaning that up to two independent displays can be implemented using any two of the above mentioned graphic ports.

### 5.1.1 DVI Connector (DVI-I) (J41)

The DVI-I connector support DVI Digital output and DVI Analogue output.



Female socket, front view


Signal Description - DVI Connector:

| Pin | Signal               | Description                                   | Туре     | Pull U/D |
|-----|----------------------|-----------------------------------------------|----------|----------|
| 1   | TMDS Data 2-         | Digital Red – (Link 1)                        | LVDS OUT |          |
| 2   | TMDS Data 2+         | Digital Red + (Link 1)                        | LVDS OUT |          |
| 3   | TMDS Data 2/4 Shield |                                               | PWR      |          |
| 4   | NC                   |                                               | NC       |          |
| 5   | NC                   |                                               | NC       |          |
| 6   | DDC Clock            | DDC Clock                                     | Ю        | 2K2      |
| 7   | DDC Data             | DDC Data                                      | Ю        | 2K2      |
| 8   | NC                   |                                               | NC       |          |
| 9   | TMDS Data 1-         | Digital Green – (Link 1)                      | LVDS OUT |          |
| 10  | TMDS Data 1+         | Digital Green + (Link 1)                      | LVDS OUT |          |
| 11  | TMDS Data 1/3 Shield |                                               | PWR      |          |
| 12  | NC                   |                                               | NC       |          |
| 13  | NC                   |                                               | NC       |          |
| 14  | +5V                  | Power for monitor when in standby             | PWR      |          |
| 15  | GND                  |                                               | PWR      |          |
| 16  | Hot Plug Detect      | Hot Plug Detect                               | l        |          |
| 17  | TMDS Data 0-         | Digital Blue – (Link 1) / Digital sync        | LVDS OUT |          |
| 18  | TMDS Data 0+         | Digital Blue + (Link 1) / Digital sync        | LVDS OUT |          |
| 19  | TMDS Data 0/5 Shield |                                               | PWR      |          |
| 20  | NC                   |                                               | NC       |          |
| 21  | NC                   |                                               | NC       |          |
| 22  | TMDS Clock Shield    |                                               | PWR      |          |
| 23  | TMDS Clock+          | Digital clock + (Link 1)                      | LVDS OUT |          |
| 24  | TMDS Clock-          | Digital clock - (Link 1)                      | LVDS OUT |          |
| C1  | ANALOG RED           | Analog output carrying the red color signal   | 0        | /75R     |
| C2  | ANALOG GREEN         | Analog output carrying the green color signal | 0        | /75R     |
| C3  | ANALOG BLUE          | Analog output carrying the blue color signal  | 0        | /75R     |
| C4  | ANALOG HSYNC         | CRT horizontal synchronization output.        | 0        |          |
| C5  | ANALOG GND           | Ground reference for RED, GREEN, and BLUE     | PWR      |          |
| C6  | ANALOG GND           | Ground reference for RED, GREEN, and BLUE     | PWR      |          |

Note: The +5V supply is fused by a 1.1A resettable fuse

### 5.1.2 **DP Connectors (DP0/DP1) (J40/J39)**

The DP (DisplayPort) connectors are based on standard DP type Foxconn 3VD51203-H7JJ-7H or similar.



| Pin | Signal     | Description                 | Туре | Note                                                                                                                                       |
|-----|------------|-----------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Lane 0 (p) |                             | LVDS |                                                                                                                                            |
| 2   | GND        |                             | PWR  |                                                                                                                                            |
| 3   | Lane 0 (n) |                             | LVDS |                                                                                                                                            |
| 4   | Lane 1 (p) |                             | LVDS |                                                                                                                                            |
| 5   | GND        |                             | PWR  |                                                                                                                                            |
| 6   | Lane 1 (n) |                             | LVDS |                                                                                                                                            |
| 7   | Lane 2 (p) |                             | LVDS |                                                                                                                                            |
| 8   | GND        |                             | PWR  |                                                                                                                                            |
| 9   | Lane 2 (n) |                             | LVDS |                                                                                                                                            |
| 10  | Lane 3 (p) |                             | LVDS |                                                                                                                                            |
| 11  | GND        |                             | PWR  |                                                                                                                                            |
| 12  | Lane 3 (n) |                             | LVDS |                                                                                                                                            |
| 13  | Config1    | Aux or DDC selection        | I    | Internally pull down (1Mohm). Aux channel on pin 15/17 selected as default (when NC) DDC channel on pin 15/17, If HDMI adapter used (3.3V) |
| 14  | Config2    | (Not used)                  | 0    | Internally connected to GND                                                                                                                |
| 15  | Aux Ch (p) | Aux Channel (+) or DDC Clk  |      | AUX (+) channel used by DP<br>DDC Clk used by HDMI                                                                                         |
| 16  | GND        |                             | PWR  |                                                                                                                                            |
| 17  | Aux Ch (n) | Aux Channel (-) or DDC Data |      | AUX (-) channel used by DP<br>DDC Data used by HDMI                                                                                        |
| 18  | Hot Plug   |                             | I    | Internally pull down (100Kohm).                                                                                                            |
| 19  | Return     |                             | PWR  | Same as GND                                                                                                                                |
| 20  | 3.3V       |                             | PWR  | Fused by 1.5A resetable PTC fuse, common for DP0 and DP1                                                                                   |

### **5.2 Ethernet Connectors**

The KTQM67 boards supports three channels of 10/100/1000Mb Ethernet, one (ETH1) is based on Intel® Lewisville 82579LM Gigabit PHY with AMT 7.0 support and the two other controllers (ETHER2 & ETHER3) are based on Intel® Hartwell 82574L PCI Express controller.

In order to achieve the specified performance of the Ethernet port, Category 5 twisted pair cables must be used with 10/100MB and Category 5E, 6 or 6E with 1Gb LAN networks.

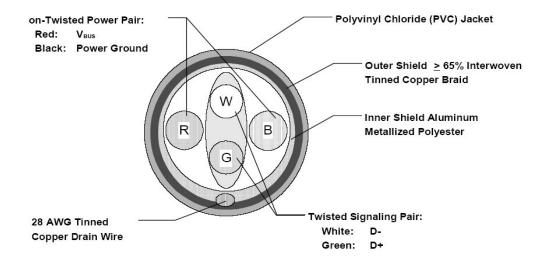
The signals for the Ethernet ports are as follows:

| Signal            | Description                                                                                                                                                                                                                                       |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDI[0]+ / MDI[0]- | In MDI mode, this is the first pair in 1000Base-T, i.e. the BI_DA+/- pair, and is the transmit pair in 10Base-T and 100Base-TX.  In MDI crossover mode, this pair acts as the BI_DB+/- pair, and is the receive pair in 10Base-T and 100Base-TX.  |
| MDI[1]+ / MDI[1]- | In MDI mode, this is the second pair in 1000Base-T, i.e. the BI_DB+/- pair, and is the receive pair in 10Base-T and 100Base-TX.  In MDI crossover mode, this pair acts as the BI_DA+/- pair, and is the transmit pair in 10Base-T and 100Base-TX. |
| MDI[2]+ / MDI[2]- | In MDI mode, this is the third pair in 1000Base-T, i.e. the BI_DC+/- pair. In MDI crossover mode, this pair acts as the BI_DD+/- pair.                                                                                                            |
| MDI[3]+ / MDI[3]- | In MDI mode, this is the fourth pair in 1000Base-T, i.e. the BI_DD+/- pair. In MDI crossover mode, this pair acts as the BI_DC+/- pair.                                                                                                           |

Note: MDI = Media Dependent Interface.

Ethernet connector 1 (ETH1) is mounted together with USB Ports 4 and 5. Ethernet connector 2 (ETH2) is mounted together with and above Ethernet connector 3 (ETH3).

The pinout of the RJ45 connectors is as follows:


| Signal |   | PIN |   |   |   |   | Type | loh/lol | Note |  |  |
|--------|---|-----|---|---|---|---|------|---------|------|--|--|
| MDI0+  |   |     |   |   |   |   |      |         |      |  |  |
| MDI0-  |   |     |   |   |   |   |      |         |      |  |  |
| MDI1+  |   |     |   |   |   |   |      |         |      |  |  |
| MDI2+  |   |     |   |   |   |   |      |         |      |  |  |
| MDI2-  |   |     |   |   |   |   |      |         |      |  |  |
| MDI1-  |   |     |   |   |   |   |      |         |      |  |  |
| MDI3+  |   |     |   |   |   |   |      |         |      |  |  |
| MDI3-  |   |     |   |   |   |   |      |         |      |  |  |
|        | 8 | 7   | 6 | 5 | 4 | 3 | 2    | 1       |      |  |  |

## 5.3 USB Connectors (IO Area)

The KTQM67 board contains two EHCI (Enhanced Host Controller Interface) host controllers that support up to fourteen USB 2.0 ports allowing data transfers up to 480Mb/s. Legacy Keyboard/Mouse and wakeup from sleep states are supported. Over-current detection on all fourteen USB ports is supported. The following USB connectors are available in the IO Area.

USB Port 0 and 1 are supplied on the combined USB0, USB1 and DP0 connector. USB Port 2 and 3 are supplied on the combined USB2, USB3 and DP1 connector. USB Port 4 and 5 are supplied on the combined ETH1, USB4 and USB5 connector.

Note: It is required to use only HiSpeed USB cable, specified in USB2.0 standard:



### 5.3.1 USB Connector 0/1 (USB0/1)

USB Ports 0 and 1 are mounted together with DP0 port.

| Note | Type | Signal  |   | PIN |   |   | Signal | Type | Note |
|------|------|---------|---|-----|---|---|--------|------|------|
|      |      |         |   |     |   |   |        |      |      |
| 1    | PWR  | 5V/SB5V | 1 | 2   | 3 | 4 | GND    | PWR  |      |
|      | IO   | USB1-   |   |     |   |   | USB1+  | IO   |      |
|      |      |         |   |     |   |   |        |      |      |
| 1    | PWR  | 5V/SB5V | 1 | 2   | 3 | 4 | GND    | PWR  |      |
|      | Ю    | USB0-   |   |     |   |   | USB0+  | Ю    |      |

**Note 1:** In order to meet the requirements of USB standard, the 5V input supply must be at least 5.00V.

| Signal                     | Description                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB0+ USB0-<br>USB1+ USB1- | Differential pair works as Data/Address/Command Bus.                                                                                                               |
| 5V/SB5V                    | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1A fuse covering both USB ports. |

### 5.3.2 USB Connector 2/3 (USB2/3)

USB Ports 2 and 3 are mounted together with DP1 port.

| Note | Туре | Signal  |   | P | N |   | Signal | Type | Note |
|------|------|---------|---|---|---|---|--------|------|------|
|      |      |         |   |   |   |   |        |      |      |
| 1    | PWR  | 5V/SB5V | 1 | 2 | 3 | 4 | GND    | PWR  |      |
|      | IO   | USB3-   |   |   |   |   | USB3+  | IO   |      |
|      |      |         |   |   |   |   |        |      |      |
| 1    | PWR  | 5V/SB5V | 1 | 2 | 3 | 4 | GND    | PWR  |      |
|      | 10   | USB2-   |   |   |   |   | USB2+  | Ю    |      |

Note 1: In order to meet the requirements of USB standard, the 5V input supply must be at least 5.00V.

| Signal                     | Description                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB2+ USB2-<br>USB3+ USB3- | Differential pair works as Data/Address/Command Bus.                                                                                                               |
| 5V/SB5V                    | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1A fuse covering both USB ports. |

### 5.3.3 USB Connector 4/5 (USB4/5)

USB Ports 4 and 5 are mounted together with ETH1 port.

| Note | Туре | Signal  | PIN |   | Signal | Туре | Note  |     |  |
|------|------|---------|-----|---|--------|------|-------|-----|--|
|      |      |         |     |   |        |      |       |     |  |
| 1    | PWR  | 5V/SB5V | 1   | 2 | 3      | 4    | GND   | PWR |  |
|      | IO   | USB5-   |     |   |        |      | USB5+ | IO  |  |
|      |      |         |     |   |        |      |       |     |  |
| 1    | PWR  | 5V/SB5V | 1   | 2 | 3      | 4    | GND   | PWR |  |
|      | 10   | USB4-   |     |   |        |      | USB4+ | IO  |  |

Note 1: In order to meet the requirements of USB standard, the 5V input supply must be at least 5.00V.

| Signal                     | Description                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB4+ USB4-<br>USB5+ USB5- | Differential pair works as Data/Address/Command Bus.                                                                                                               |
| 5V/SB5V                    | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1A fuse covering both USB ports. |

## 5.4 Audio Connector (IO Area)

The on-board Audio circuit implements 7.1+2 Channel High Definition Audio with UAA (Universal Audio Architecture), featuring five 24-bit stereo DACs and three 20-bit stereo ADCs. The Following Audio connector is available in IO Area.

Audio Speakers, Line-in and Microphone are available in the stacked audiojack connector

|        | Signal      | Туре | Note |
|--------|-------------|------|------|
|        |             |      |      |
| TIP    | LINE1-L     | IA   |      |
| RING   | LINE1-R     | IA   |      |
| SLEEVE | GND         | PWR  |      |
|        |             |      |      |
| TIP    | FRONT-OUT-L | OA   |      |
| RING   | FRONT-OUT-R | OA   |      |
| SLEEVE | GND         | PWR  |      |
|        |             |      |      |
| TIP    | MIC1-L      | IA   |      |
| RING   | MIC1-R      | IA   |      |
| SLEEVE | GND         | PWR  |      |
|        |             |      |      |

| Signal                        | Description                         | Note                     |
|-------------------------------|-------------------------------------|--------------------------|
| FRONT-OUT-L                   | Front Speakers (Speaker Out Left).  |                          |
| FRONT-OUT-R                   | Front Speakers (Speaker Out Right). |                          |
| MIC1-L                        | Microphone 1 - Left                 | Shared with Audio Header |
| MIC1-R Microphone 1 - Right   |                                     | Shared with Audio Header |
| LINE1-L Line 1 signal - Left  |                                     | Shared with Audio Header |
| LINE1-R Line 1 signal - Right |                                     | Shared with Audio Header |

## **6 Internal Connectors**

## **6.1 Power Connector (ATX/BTXPWR)**

The KTQM67 boards are designed to be supplied from a standard ATX (or BTX) power supply. Alternatively supplied by single +12V +/-5% (mITX version only). Use of BTX supply is not required for operation, but may be required to drive high-power PCIe cards.

ATX/ BTX Power Connector (J43):

| Note | Туре | Signal | PIN |    | Signal | Туре | Note |
|------|------|--------|-----|----|--------|------|------|
|      | PWR  | 3V3    | 12  | 24 | GND    | PWR  |      |
|      | PWR  | +12V   | 11  | 23 | 5V     | PWR  |      |
|      | PWR  | +12V   | 10  | 22 | 5V     | PWR  |      |
|      | PWR  | SB5V   | 9   | 21 | 5V     | PWR  |      |
|      | I    | P_OK   | 8   | 20 | -5V    | PWR  | 1    |
|      | PWR  | GND    | 7   | 19 | GND    | PWR  |      |
|      | PWR  | 5V     | 6   | 18 | GND    | PWR  |      |
|      | PWR  | GND    | 5   | 17 | GND    | PWR  |      |
|      | PWR  | 5V     | 4   | 16 | PSON#  | OC   |      |
|      | PWR  | GND    | 3   | 15 | GND    | PWR  |      |
|      | PWR  | 3V3    | 2   | 14 | -12V   | PWR  |      |
|      | PWR  | 3V3    | 1   | 13 | 3V3    | PWR  |      |

Note 1: -5V supply is not used on-board.

See chapter "Power Consumption" regarding input tolerances on 3.3V, 5V, SB5V, +12 and -12V (also refer to ATX specification version 2.2).

ATX+12V-4pin Power Connector (J42):

| Note | Туре | Signal | PIN | Sign | al Type | Note |
|------|------|--------|-----|------|---------|------|
|      | PWR  | GND    | 2 4 | +12\ | / PWR   | 1    |
|      | PWR  | GND    | 1 3 | +12\ | / PWR   | 1    |

**Note 1**: Use of the 4-pin ATX+12V Power Connector is required for operation of all KTQM67 board versions.

| Signal | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P_OK   | P_OK is a power good signal and should be asserted high by the power supply to indicate that the +5VDC and +3.3VDC outputs are above the undervoltage thresholds of the power supply. When this signal is asserted high, there should be sufficient energy stored by the converter to guarantee continuous power operation within specification. Conversely, when the output voltages fall below the undervoltage threshold, or when mains power has been removed for a time sufficiently long so that power supply operation is no longer guaranteed, P_OK should be de-asserted to a low state. The recommended electrical and timing characteristics of the P_OK (PWR_OK) signal are provided in the <i>ATX12V Power SupplyDesign Guide</i> . It is strongly recommended to use an ATX or BTX supply, in order to implement the supervision of the 5V and 3V3 supplies. These supplies are not supervised on-board. |
| PS_ON# | Active low open drain signal from the board to the power supply to turn on the power supply outputs. Signal must be pulled high by the power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## 6.2 Fan Connectors (FAN\_CPU) (J28) and (FAN\_SYS) (J29)

The **FAN\_CPU** is used for the connection of the FAN for the CPU. The **FAN\_SYS** can be used to power, control and monitor a fan for chassis ventilation etc.

The 4pin header is recommended to be used for driving 4-wire type Fan in order to implement FAN speed control. 3-wire Fan is also possible, but no fan speed control is integrated.

#### 4-pin Mode:

| PIN | Signal  | Туре | loh/lol | Pull<br>U/D | Note |
|-----|---------|------|---------|-------------|------|
| 1   | CONTROL | 0    | -       | -           |      |
| 2   | SENSE   | I    | -       | 4K7         |      |
| 3   | +12V    | PWR  | -       | -           |      |
| 4   | GND     | PWR  | -       | -           |      |

| Signal  | Description                                                                                                                                                                                                                  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL | PWM signal for FAN speed control                                                                                                                                                                                             |
| SENSE   | Tacho signal from the fan for supervision. The signals shall be generated by an open collector transistor or similar. On-board is a pull-up resistor 4K7 to +12V. The signal has to be pulsed, typically twice per rotation. |
| 12V     | +12V supply for fan. A maximum of 2000mA can be supplied from this pin.                                                                                                                                                      |
| GND     | Power Supply GND signal                                                                                                                                                                                                      |

#### 3-pin Mode:

| PIN | Signal | Туре | loh/lol | Pull<br>U/D | Note |
|-----|--------|------|---------|-------------|------|
| -   |        |      |         |             |      |
| 2   | SENSE  | I    | -       | 4K7         |      |
| 3   | +12V   | PWR  | -       | -           |      |
| 4   | GND    | PWR  | -       | -           |      |

| Signal | Description                                                                                                                                                                                                                  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SENSE  | Tacho signal from the fan for supervision. The signals shall be generated by an open collector transistor or similar. On-board is a pull-up resistor 4K7 to +12V. The signal has to be pulsed, typically twice per rotation. |
| 12V    | +12V supply for fan. A maximum of 2000mA can be supplied from this pin.                                                                                                                                                      |
| GND    | Power Supply GND signal                                                                                                                                                                                                      |

## 6.3 PS/2 Keyboard and Mouse connector (KBDMSE) (J27)

Attachment of a PS/2 keyboard/mouse can be done through the pinrow connector KBDMSE (J27). Both interfaces utilize open-drain signalling with on-board pull-up.

The PS/2 mouse and keyboard is supplied from SB5V when in standby mode in order to enable keyboard or mouse activity to bring the system out from power saving states. The supply is provided through a 1.1A resettable fuse.

| PIN | Signal  | Туре | loh/lol | Pull<br>U/D | Note |
|-----|---------|------|---------|-------------|------|
| 1   | KBDCLK  | IOD  | /14mA   | 2K7         |      |
| 2   | KBDDAT  | IOD  | /14mA   | 2K7         |      |
| 3   | MSCLK   | IOD  | /14mA   | 2K7         |      |
| 4   | MSDAT   | IOD  | /14mA   | 2K7         |      |
| 5   | 5V/SB5V | PWR  | -       | -           |      |
| 6   | GND     | PWR  | -       | -           |      |

Signal Description - Keyboard & and mouse Connector (KBDMSE).

| Signal | Description                                                                                          |  |  |
|--------|------------------------------------------------------------------------------------------------------|--|--|
| MSCLK  | Bi-directional clock signal used to strobe data/commands from/to the PS/2 mouse.                     |  |  |
| MSDAT  | Bi-directional serial data line used to transfer data from or commands to the PS/2 mouse.            |  |  |
| KDBCLK | Bi-directional clock signal used to strobe data/commands from/to the PC-AT keyboard.                 |  |  |
| KBDDAT | KBDDAT Bi-directional serial data line used to transfer data from or commands to the PC-AT keyboard. |  |  |

### 6.4 Display connectors (Internal)

The KTQM67 family provides internal display connectors: one on-board eDP (Embedded DisplayPort) and one on-board LVDS panel interface.

For IO Area Display Connectors (DVI-I and two DP's), see earlier section.

Two graphic pipes are supported; meaning that up to two independent displays can be implemented using any two of display connectors (IO Area - and Internal connectors) with the exception of the combination eDP + LVDS.

.

#### 6.4.1 eDP connector (EDP) (J38)

The eDP connector is based on single in-line 40 pole connector type TYCO 5-2069716-3.

| Pin | Signal     | Description                            | Туре | Note                             |
|-----|------------|----------------------------------------|------|----------------------------------|
| 1   | NC         |                                        | NC   |                                  |
| 2   | GND        |                                        | PWR  |                                  |
| 3   | Lane 3 (n) |                                        | LVDS |                                  |
| 4   | Lane 3 (p) |                                        | LVDS |                                  |
| 5   | GND        |                                        | PWR  |                                  |
| 6   | Lane 2 (n) |                                        | LVDS |                                  |
| 7   | Lane 2 (p) |                                        | LVDS |                                  |
| 8   | GND        |                                        | PWR  |                                  |
| 9   | Lane 1 (n) |                                        | LVDS |                                  |
| 10  | Lane 1 (p) |                                        | LVDS |                                  |
| 11  | GND        |                                        | PWR  |                                  |
| 12  | Lane 0 (p) |                                        | LVDS |                                  |
| 13  | Lane 0 (n) |                                        | LVDS |                                  |
| 14  | GND        |                                        | PWR  |                                  |
| 15  | Aux (p)    |                                        | LVDS |                                  |
| 16  | Aux (n)    |                                        | LVDS |                                  |
| 17  | GND        |                                        | PWR  |                                  |
| 18  | LCD-VCC    |                                        | PWR  |                                  |
| 19  | LCD-VCC    | Display panel voltage                  | PWR  | Fused by 1.5A resetable PTC fuse |
| 20  | LCD-VCC    |                                        | PWR  | 3.3V or 5V selected in BIOS      |
| 21  | LCD-VCC    |                                        | PWR  | Shared with LVDS connector       |
| 22  | NC         |                                        | NC   |                                  |
| 23  | LCD-GND    |                                        | PWR  |                                  |
| 24  | LCD-GND    | Display panel GND                      | PWR  |                                  |
| 25  | LCD-GND    |                                        | PWR  |                                  |
| 26  | LCD-GND    |                                        | PWR  |                                  |
| 27  | HPD        | Hot Plug Detection                     | I    |                                  |
| 28  | BL-GND     |                                        | PWR  |                                  |
| 29  | BL-GND     | Backlight GND                          | PWR  |                                  |
| 30  | BL-GND     |                                        | PWR  |                                  |
| 31  | BL-GND     |                                        | PWR  |                                  |
| 32  | BL-EN      | Back Light Enable                      | 0    | To enable the Back Light         |
| 33  | BL-PWM     | Back Light PWM (Pulse Width Modulated) | 0    | To adjust Back Light intensity   |
| 34  | NC         |                                        | NC   |                                  |
| 35  | NC         |                                        | NC   |                                  |
| 36  | BL-VCC     |                                        | PWR  |                                  |
| 37  | BL-VCC     | Backlight Voltage                      | PWR  | 12V (in S0 mode)                 |
| 38  | BL-VCC     |                                        | PWR  | Fused by 1.5A resetable PTC fuse |
| 39  | BL-VCC     |                                        | PWR  |                                  |
| 40  | NC         |                                        | NC   |                                  |

#### 6.4.2 LVDS Flat Panel Connector (LVDS) (J20)

Two graphic pipes are supported; meaning that up to two independent displays can be implemented using any two of display connectors (IO Area - and Internal connectors) with the exception of the combination eDP + LVDS.

| Note       | Туре | Signal     | Р  | IN | Signal     | Туре | Note       |
|------------|------|------------|----|----|------------|------|------------|
| Max. 0.5A  | PWR  | +12V       | 1  | 2  | +12V       | PWR  | Max. 0.5A  |
| Max. 0.5A  | PWR  | +12V       | 3  | 4  | +12V       | PWR  | Max. 0.5A  |
| Max. 0.5A  | PWR  | +12V       | 5  | 6  | GND        | PWR  | Max. 0.5A  |
| Max. 0.5A  | PWR  | +5V        | 7  | 8  | GND        | PWR  | Max. 0.5A  |
| Max. 0.5A  | PWR  | LCDVCC     | 9  | 10 | LCDVCC     | PWR  | Max. 0.5A  |
| 2K2Ω, 3.3V | OT   | DDC CLK    | 11 | 12 | DDC DATA   | OT   | 2K2Ω, 3.3V |
| 3.3V level | OT   | BKLTCTL    | 13 | 14 | VDD ENABLE | OT   | 3.3V level |
| 3.3V level | ОТ   | BKLTEN#    | 15 | 16 | GND        | PWR  | Max. 0.5A  |
|            | LVDS | LVDS A0-   | 17 | 18 | LVDS A0+   | LVDS |            |
|            | LVDS | LVDS A1-   | 19 | 20 | LVDS A1+   | LVDS |            |
|            | LVDS | LVDS A2-   | 21 | 22 | LVDS A2+   | LVDS |            |
|            | LVDS | LVDS ACLK- | 23 | 24 | LVDS ACLK+ | LVDS |            |
|            | LVDS | LVDS A3-   | 25 | 26 | LVDS A3+   | LVDS |            |
| Max. 0.5A  | PWR  | GND        | 27 | 28 | GND        | PWR  | Max. 0.5A  |
|            | LVDS | LVDS B0-   | 29 | 30 | LVDS B0+   | LVDS |            |
|            | LVDS | LVDS B1-   | 31 | 32 | LVDS B1+   | LVDS |            |
|            | LVDS | LVDS B2-   | 33 | 34 | LVDS B2+   | LVDS |            |
|            | LVDS | LVDS BCLK- | 35 | 36 | LVDS BCLK+ | LVDS |            |
|            | LVDS | LVDS B3-   | 37 | 38 | LVDS B3+   | LVDS |            |
| Max. 0.5A  | PWR  | GND        | 39 | 40 | GND        | PWR  | Max. 0.5A  |

**Note**: The KTQM67 on-board LVDS connector supports single and dual channel, 18/24bit SPWG panels up to the resolution 1600x1200 or 1920x1080 and with limited frame rate some 1920x1200.

Signal Description – LVDS Flat Panel Connector:

| Signal     | Description                                                                       |
|------------|-----------------------------------------------------------------------------------|
| LVDS A0A3  | LVDS A Channel data                                                               |
| LVDS ACLK  | LVDS A Channel clock                                                              |
| LVDS B0B3  | LVDS B Channel data                                                               |
| LVDS BCLK  | LVDS B Channel clock                                                              |
| BKLTCTL    | Backlight control (1), PWM signal to implement voltage in the range 0-3.3V        |
| BKLTEN#    | Backlight Enable signal (active low) (2)                                          |
| VDD ENABLE | Output Display Enable.                                                            |
|            | VCC supply to the display. Power-on/off sequencing depending on selected (in BIOS |
| LCDVCC     | setup) display type. 5V or 3.3V selected in BIOS setup. LCDVCC is shared with eDP |
|            | connector. Maximum load is 1A at both voltages.                                   |
| DDC CLK    | DDC Channel Clock                                                                 |

**Notes**: Windows API will be available to operate the BKLTCTL signal. Some Inverters have a limited voltage range 0- 2.5V for this signal: If voltage is > 2.5V the Inverter might latch up. Some Inverters generates noise on the BKLTCTL signal, resulting in making the LVDS transmission failing (corrupted picture on the display). By adding a 1Kohm resistor in series with this signal, mounted in the Inverter end of the cable kit, the noise is limited and the picture is stable.

If the Backlight Enable is required to be active high then, check the following BIOS Chipset setting: Backlight Signal Inversion = Enabled.

### 6.5 SATA (Serial ATA) Disk interface (J21 - J26)

The KTQM67 boards have an integrated SATA Host controller (PCH in the QM67 chipset) that supports independent DMA operation on six ports. One device can be installed on each port for a maximum of six SATA devices. A point-to-point interface (SATA cable) is used for host to device connections. Data transfer rates of up to 6.0Gb/s (600MB/s) on SATA0 and SATA1 and 3.0Gb/s (300MB/s) on SATA2, SATA3, SATA4 and SATA5.

The SATA controller supports:

2 to 6-drive RAID 0 (data striping)

2-drive RAID 1 (data mirroring)

3 to 6-drive RAID 5 (block-level striping with parity).

4-drive RAID 10 (data striping and mirroring)

2 to 6-drive matrix RAID (different parts of a single drive can be assigned to different RAID devices)

AHCI (Advanced Host Controller Interface)

NCQ (Native Command Queuing). NCQ is for faster data access.

Hot Swap

Intel® Rapid Recover Technology

2 – 256TB volume (Data volumes only)

Capacity expansion

TRIM in Windows 7 (in AHCI and RAID mode for drives not part of a RAID volume). (TRIM is for SSD data garbage handling).

The RAID (Redundant Array of Independent Drives) functionality is based on a firmware system with support for RAID modes 0 1, 5 and 10.

#### SATA connector pinning:

The pinout of SATA ports SATA0 (J21), SATA1 (J22), SATA2 (J23), SATA3 (J24), SATA4 (J25) and SATA5 (J26) is as follows:

| PIN | Signal    | Туре | loh/lol | Pull<br>U/D | Note |
|-----|-----------|------|---------|-------------|------|
|     |           |      |         |             |      |
| 1   | GND       | PWR  | -       | -           |      |
| 2   | SATA* TX+ |      |         |             |      |
| 3   | SATA* TX- |      |         |             |      |
| 4   | GND       | PWR  | -       | -           |      |
| 5   | SATA* RX- |      |         |             |      |
| 6   | SATA* RX+ |      |         |             |      |
| 7   | GND       | PWR  | -       | -           |      |

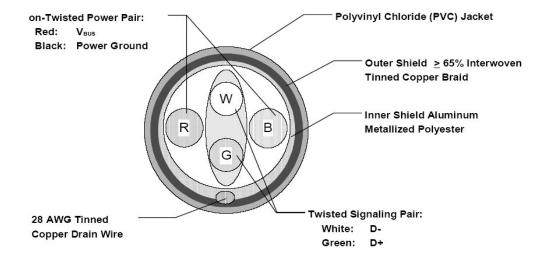
The signals used for the primary SATA hard disk interface are the following:

| Signal    | Description                               |
|-----------|-------------------------------------------|
| SATA* RX+ | Host transmitter differential signal pair |
| SATA* RX- |                                           |
| SATA* TX+ | Host receiver differential signal pair    |
| SATA* TX- |                                           |

<sup>&</sup>quot;\*" specifies 0, 1, 2, 3, 4, 5 depending on SATA port.

### 6.6 USB Connectors (USB)

The KTQM67 board contains two EHCI (Enhanced Host Controller Interface) host controllers that support up to fourteen USB 2.0 ports allowing data transfers up to 480Mb/s. Legacy Keyboard/Mouse and wakeup from sleep states are supported. Over-current detection on all fourteen USB ports is supported. The following USB ports are available on Internal Pinrows:


USB Port 6 and 7 are supplied on the USB6/7 internal pinrow FRONTPNL connector.

USB Port 8 and 9 are supplied on the USB8/9 internal pinrow connector.

USB Port 10 and 11 are supplied on the USB10/11 internal pinrow connector.

USB Port 12 and 13 are supplied on the USB12/13 internal pinrow connector.

Note: It is required to use only HiSpeed USB cable, specified in USB2.0 standard:



#### 6.6.1 USB Connector 6/7

See Frontpanel Connector (FRONTPNL) description.

#### 6.6.2 USB Connector 8/9 (USB8/9) (J10)

USB Ports 8 and 9 are supplied on the internal USB8/9 pinrow connector J10.

| Note | Type | Signal  | PIN  | Signal  | Type | Note |
|------|------|---------|------|---------|------|------|
| 1    | PWR  | 5V/SB5V | 1 2  | 5V/SB5V | PWR  | 1    |
|      | Ю    | USB8-   | 3 4  | USB9-   | Ю    |      |
|      | Ю    | USB8+   | 5 6  | USB9+   | Ю    |      |
|      | PWR  | GND     | 7 8  | GND     | PWR  |      |
|      | NC   | KEY     | 9 10 | NC      | NC   |      |

| Signal                     | Description                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB8+ USB8-<br>USB9+ USB9- | Differential pair works as Data/Address/Command Bus.                                                                                                               |
| 5V/SB5V                    | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1A fuse covering both USB ports. |

### 6.6.3 USB Connector 10/11 (USB10/11) (J11)

USB Ports 10 and 11 are supplied on the internal USB10/11 pinrow connector J11.

| Note | Туре | Signal  | PIN  | Signal  | Туре | Note |
|------|------|---------|------|---------|------|------|
| 1    | PWR  | 5V/SB5V | 1 2  | 5V/SB5V | PWR  | 1    |
|      | Ю    | USB10-  | 3 4  | USB11-  | Ю    |      |
|      | Ю    | USB10+  | 5 6  | USB11+  | Ю    |      |
|      | PWR  | GND     | 7 8  | GND     | PWR  |      |
|      | NC   | KEY     | 9 10 | NC      | NC   |      |

| Signal                         | Description                                                                                                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB10+ USB10-<br>USB11+ USB11- | Differential pair works as Data/Address/Command Bus.                                                                                                               |
| 5V/SB5V                        | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1A fuse covering both USB ports. |

### 6.6.4 USB Connector 12/13 (USB12/13) (J12)

USB Ports 12 and 13 are supplied on the internal USB12/13 pinrow connector J12.

| Note | Туре | Signal  | PIN  | Signal  | Туре | Note |
|------|------|---------|------|---------|------|------|
| 1    | PWR  | 5V/SB5V | 1 2  | 5V/SB5V | PWR  | 1    |
|      | Ю    | USB12-  | 3 4  | USB13-  | Ю    |      |
|      | Ю    | USB12+  | 5 6  | USB13+  | Ю    |      |
|      | PWR  | GND     | 7 8  | GND     | PWR  |      |
|      | NC   | KEY     | 9 10 | NC      | NC   |      |

| Signal                         | Description                                                                                                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB12+ USB12-<br>USB13+ USB13- | Differential pair works as Data/Address/Command Bus.                                                                                                               |
| 5V/SB5V                        | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1A fuse covering both USB ports. |

Note 1: In order to meet the requirements of USB standard, the 5V input supply must be at least 5.00V.

**Internal Connectors** 

## 6.7 Firewire/IEEE1394 connectors (J13,J14)

The KTQM67 support two IEEE Std 1394a-2000 fully compliant ports at 100M bits/s, 200M bits/s and 400M bits/s.

#### 6.7.1 IEEE1394 connector (IEEE1394\_0) (J14)

| Note | Pull<br>U/D | loh/lol | Туре | Signal | PIN  | Signal | Туре | loh/lol | Pull<br>U/D | Note |
|------|-------------|---------|------|--------|------|--------|------|---------|-------------|------|
|      | -           | -       |      | TPA0+  | 1 2  | TPA0-  |      | -       | -           |      |
|      | -           | -       | PWR  | GND    | 3 4  | GND    | PWR  | -       | -           |      |
|      | -           | -       |      | TPB0+  | 5 6  | TPB0-  |      | -       | -           |      |
| 1    | -           | -       | PWR  | +12V   | 7 8  | +12V   | PWR  | -       | -           | 1    |
| key  | -           | -       | NC   | -      | 9 10 | GND    | PWR  | -       | -           |      |

**Note 1:** The 12V supply for the IEEE1394\_0 devices is on-board fused with a 1.25A reset-able fuse.

| Signal       | Description                |
|--------------|----------------------------|
| TPA0+,TPA0-  | Differential signal pair A |
| TPB0+, TPB0- | Differential signal pair B |
| +12V         | +12V supply                |

#### 6.7.2 IEEE1394 connector (IEEE1394\_1) (J13)

| Note | Pull<br>U/D | loh/lol | Туре | Signal | PIN  | Signal | Туре | loh/lol | Pull<br>U/D | Note |
|------|-------------|---------|------|--------|------|--------|------|---------|-------------|------|
|      | -           | -       |      | TPA0+  | 1 2  | TPA0-  |      | -       | -           |      |
|      | -           | -       | PWR  | GND    | 3 4  | GND    | PWR  | -       | -           |      |
|      | -           | -       |      | TPB0+  | 5 6  | TPB0-  |      | -       | -           |      |
| 1    | -           | -       | PWR  | +12V   | 7 8  | +12V   | PWR  | -       | -           | 1    |
| key  | -           | -       | NC   | -      | 9 10 | GND    | PWR  | -       | -           |      |

**Note 1:** The 12V supply for the IEEE1394\_1 devices is on-board fused with a 1.25A reset-able fuse.

| Signal       | Description                |
|--------------|----------------------------|
| TPA1+, TPA1- | Differential signal pair A |
| TPB1+, TPB1- | Differential signal pair B |
| +12V         | +12V supply                |

## 6.8 Serial COM1 - COM4 Ports (J15, J16, J17, J18)

Four RS232 serial ports are available on the KTQM67.

The typical definition of the signals in the COM ports is as follows:

| Signal | Description                                                                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TxD    | Transmitted Data, sends data to the communications link. The signal is set to the marking state (-12V) on hardware reset when the transmitter is empty or when loop mode operation is initiated. |
| RxD    | Received Data, receives data from the communications link.                                                                                                                                       |
| DTR    | Data Terminal Ready, indicates to the modem etc. that the on-board UART is ready to establish a communication link.                                                                              |
| DSR    | Data Set Ready, indicates that the modem etc. is ready to establish a communications link.                                                                                                       |
| RTS    | Request To Send, indicates to the modem etc. that the on-board UART is ready to exchange data.                                                                                                   |
| CTS    | Clear To Send, indicates that the modem or data set is ready to exchange data.                                                                                                                   |
| DCD    | Data Carrier Detect, indicates that the modem or data set has detected the data carrier.                                                                                                         |
| RI     | Ring Indicator, indicates that the modem has received a ringing signal from the telephone line.                                                                                                  |

The pinout of Serial ports COM1 (J15), COM2 (J16), COM3 (J17) and COM4 (J18) is as follows:

| Note | loh/lol | Туре | Signal | PIN  | Signal | Туре | loh/lol | Note |
|------|---------|------|--------|------|--------|------|---------|------|
|      | -       | I    | DCD    | 1 2  | DSR    | I    | -       |      |
|      | -       | I    | RxD    | 3 4  | RTS    | 0    |         |      |
|      |         | 0    | TxD    | 5 6  | CTS    | I    | -       |      |
|      |         | 0    | DTR    | 7 8  | RI     | I    | -       |      |
|      | -       | PWR  | GND    | 9 10 | 5V     | PWR  | -       | 1    |

Note 1: The COM1, COM2, COM3 and COM4 5V supply is fused with common 1.1A resettable fuse.

DB9 adapter cables (PN 821016 200mm long and 821017 100mm long) are available for implementing standard COM ports on chassis.

## 6.9 LPT (Line Print Terminal – Parallel port) (J44)

The LPT connector is a 32 pole single in line connector type Tyco 3-1734592-2. Available is cable kit PN 1046-3057 (LPT Module) and 1045-9287 (100mm FFC) or 1045-9290 (200mm FFC).

| Pin | Signal | Description | Туре | Note                             |
|-----|--------|-------------|------|----------------------------------|
| 1   | +5V    |             | PWR  | Fused by 0.8A resetable PTC fuse |
| 2   | GND    |             | PWR  |                                  |
| 3   | RSV    | Reserved    | -    |                                  |
| 4   | RSV    | Reserved    | -    |                                  |
| 5   | RSV    | Reserved    | -    |                                  |
| 6   | RSV    | Reserved    | -    |                                  |
| 7   | NC     |             | NC   |                                  |
| 8   | RSV    | Reserved    | -    |                                  |
| 9   | RSV    | Reserved    | -    |                                  |
| 10  | RSV    | Reserved    | -    |                                  |
| 11  | GND    |             | PWR  |                                  |
| 12  | AFD#   |             | IS   |                                  |
| 13  | STB#   |             | IS   |                                  |
| 14  | ERROR# |             | 0    | 8mA load                         |
| 15  | PPD0   |             | 0    | 8mA load                         |
| 16  | INIT#  |             | IS   |                                  |
| 17  | GND    |             | PWR  |                                  |
| 18  | PPD1   |             | 0    | 8mA load                         |
| 19  | SLIN#  |             | IS   |                                  |
| 20  | PPD2   |             | 0    | 8mA load                         |
| 21  | PPD3   |             | 0    | 8mA load                         |
| 22  | GND    |             | PWR  |                                  |
| 23  | PPD4   |             | 0    | 8mA load                         |
| 24  | PPD5   |             | 0    | 8mA load                         |
| 25  | PPD6   |             | 0    | 8mA load                         |
| 26  | PPD7   |             | 0    | 8mA load                         |
| 27  | GND    |             | PWR  |                                  |
| 28  | ACK#   |             | 0    | 8mA load                         |
| 29  | BUSY   |             | 0    | 8mA load                         |
| 30  | PE     |             | 0    | 8mA load                         |
| 31  | SLCT   |             | 0    | 8mA load                         |
| 32  | GND    |             | PWR  |                                  |

| Signal      | Description                 |
|-------------|-----------------------------|
| AFD#        | Auto Line Feed, active low  |
| STB#        | Strobe, active low          |
| ERROR#      | Error, active low           |
| PPD0 – PPD7 | Parallel Port Data0 – Data7 |
| INIT#       | Initialize, active low      |
| SLIN#       | Select Input, active low    |
| ACK#        | Acknowledge, active low     |
| BUSY        | Busy, active high           |
| PE          | Paper End, active high      |
| SLCT        | Select, active high         |

### 6.10 Audio Connectors

The on-board Audio circuit implements 7.1+2 Channel High Definition Audio with UAA (Universal Audio Architecture), featuring five 24-bit stereo DACs and three 20-bit stereo ADCs.

The following Audio connectors are available as Internal connectors.

#### 6.10.1 CDROM Audio Input (CDROM) (J3)

CD-ROM audio input may be connected to this connector or it can be used as secondary line-in signal.

| PIN | Signal   | Туре | Note |
|-----|----------|------|------|
| 1   | CD_Left  | IA   | 1    |
| 2   | CD_GND   | IA   |      |
| 3   | CD_GND   | IA   |      |
| 4   | CD_Right | IA   | 1    |

**Note 1**: The definition of which pins are used for the Left and Right channels is not a worldwide accepted standard. Some CDROM cable kits expect reverse pin order.

| Signal              | Description                                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------|
| CD_Left<br>CD_Right | Left and right CD audio input lines or secondary Line-in.                                                              |
| CD_GND              | Analogue GND for Left and Right CD. (This analogue GND is <b>not</b> shorted to the general digital GND on the board). |

#### **6.10.2 Line2 and Mic2**

Line2 and Mic2 are accessible via Feature Connector, see Feature connector description.

### 6.10.1 Audio Header Connector (AUDIO\_HEAD) (J31)

| Note | Туре | Signal      | PIN   | Signal      | Туре | Note |
|------|------|-------------|-------|-------------|------|------|
|      | AO   | LFE-OUT     | 1 2   | CEN-OUT     | AO   |      |
|      | PWR  | AAGND       | 3 4   | AAGND       | PWR  |      |
| 1    | AO   | FRONT-OUT-L | 5 6   | FRONT-OUT-R | AO   | 1    |
|      | PWR  | AAGND       | 7 8   | AAGND       | PWR  |      |
|      | AO   | REAR-OUT-L  | 9 10  | REAR-OUT-R  | AO   |      |
|      | AO   | SIDE-OUT-L  | 11 12 | SIDE-OUT-R  | AO   |      |
|      | PWR  | AAGND       | 13 14 | AAGND       | PWR  |      |
| 1    | Al   | MIC1-L      | 15 16 | MIC1-R      | Al   | 1    |
|      | PWR  | AAGND       | 17 18 | AAGND       | PWR  |      |
| 1    |      | LINE1-L     | 19 20 | LINE1-R     |      | 1    |
|      | NC   | NC          | 21 22 | AAGND       | PWR  |      |
|      | PWR  | GND         | 23 24 | NC          | NC   |      |
|      | 0    | SPDIF-OUT   | 25 26 | GND         | PWR  |      |

Note 1: Shared with Audio Stack connector

| Signal      | Description                               |
|-------------|-------------------------------------------|
| FRONT-OUT-L | Front Speakers (Speaker Out Left).        |
| FRONT-OUT-R | Front Speakers (Speaker Out Right).       |
| REAR-OUT-L  | Rear Speakers (Surround Out Left).        |
| REAR-OUT-R  | Rear Speakers (Surround Out Right).       |
| SIDE-OUT-L  | Side speakers (Surround Out Left)         |
| SIDE-OUT-R  | Side speakers (Surround Out Right)        |
| CEN-OUT     | Center Speaker (Center Out channel).      |
| LFE-OUT     | Subwoofer Speaker (Low Freq. Effect Out). |
| NC          | No connection                             |
| MIC1        | MIC Input 1                               |
| LINE1       | Line 1 signals                            |
| F-SPDIF-OUT | S/PDIF Output                             |
| AAGND       | Audio Analogue ground                     |

## 6.11 Front Panel Connector (FRONTPNL) (J19)

| Note | Pull<br>U/D | loh/<br>lol | Туре | Signal    | PI | N  | Signal     | Туре | loh/<br>lol | Pull<br>U/D | Note |
|------|-------------|-------------|------|-----------|----|----|------------|------|-------------|-------------|------|
|      | -           | -           | PWR  | USB6/7_5V | 1  | 2  | USB6/7_5V  | PWR  | -           | -           |      |
|      | -           | -           |      | USB6-     | 3  | 4  | USB7-      |      | -           | -           |      |
|      | -           | -           |      | USB6+     | 5  | 6  | USB7+      |      | -           | -           |      |
|      | -           | -           | PWR  | GND       | 7  | 8  | GND        | PWR  | -           | -           |      |
|      | -           | -           | NC   | NC        | 9  | 10 | LINE2-L    |      | -           | -           |      |
|      | -           | -           | PWR  | +5V       | 11 | 12 | +5V        | PWR  | -           | -           |      |
|      | -           | 25/25mA     | 0    | SATA_LED# | 13 | 14 | SUS_LED    | 0    | 7mA         | -           |      |
|      | -           | -           | PWR  | GND       | 15 | 16 | PWRBTN_IN# | I    |             | 1K1         |      |
|      | 4K7         | -           | I    | RSTIN#    | 17 | 18 | GND        | PWR  | -           | -           |      |
|      | -           | -           | PWR  | SB3V3     | 19 | 20 | LINE2-R    |      | -           | -           |      |
|      | -           | -           | PWR  | AGND      | 21 | 22 | AGND       | PWR  | -           | -           |      |
|      | -           | -           | Al   | MIC2-L    | 23 | 24 | MIC2-R     | Al   | -           | -           |      |

| Signal         | Description                                                                                                                                                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB10/11_5V    | 5V supply for external devices. SB5V is supplied during powerdown to allow wakeup on USB device activity. Protected by resettable 1.1A fuse covering both USB ports. |
| USB1+<br>USB1- | Universal Serial Bus Port 1 Differentials: Bus Data/Address/Command Bus.                                                                                             |
| USB3+<br>USB3- | Universal Serial Bus Port 3 Differentials: Bus Data/Address/Command Bus.                                                                                             |
| +5V            | Maximum load is 1A or 2A per pin if using IDC connector flat cable or crimp terminals respectively.                                                                  |
| SATA_LED#      | SATA Activity LED (active low signal). 3V3 output when passive.                                                                                                      |
| SUS_LED        | Suspend Mode LED (active high signal). Output 3.3V via 470Ω.                                                                                                         |
| PWRBTN_IN#     | Power Button In. Toggle this signal low to start the ATX / BTX PSU and boot the board.                                                                               |
| RSTIN#         | Reset Input. When pulled low for a minimum 16ms, the reset process will be initiated. The reset process continues even though the Reset Input is kept low.           |
| LINE2          | Line2 is second stereo Line signals                                                                                                                                  |
| MIC2           | MIC2 is second stereo microphone input.                                                                                                                              |
| SB3V3          | Standby 3.3V voltage                                                                                                                                                 |
| AGND           | Analogue Ground for Audio                                                                                                                                            |

Note: In order to meet the requirements of USB standard, the 5V input supply must be at least 5.00V.

## 6.12 Feature Connector (FEATURE) (J30)

| Note | Pull<br>U/D | loh/lol | Туре | Signal     | P  | IN | Signal  | Туре | loh/lol | Pull<br>U/D | Note |
|------|-------------|---------|------|------------|----|----|---------|------|---------|-------------|------|
| 2    | 2M/         | -       | I    | CASE_OPEN# | 1  | 2  | SMBC    |      | /4mA    | 10K/        | 1    |
|      | -           | 25/25mA | 0    | S5#        | 3  | 4  | SMBD    |      | /4mA    | 10K/        | 1    |
|      | -           | 25/25mA | 0    | PWR_OK     | 5  | 6  | EXT_BAT | PWR  | -       | -           |      |
|      | -           |         | 0    | FAN3OUT    | 7  | 8  | FAN3IN  | I    | -       | -           |      |
|      | -           | -       | PWR  | SB3V3      | 9  | 10 | SB5V    | PWR  | -       | -           |      |
|      | -           |         | IOT  | GPIO0      | 11 | 12 | GPIO1   | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO2      | 13 | 14 | GPIO3   | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO4      | 15 | 16 | GPIO5   | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO6      | 17 | 18 | GPIO7   | IOT  |         | -           |      |
|      | -           | -       | PWR  | GND        | 19 | 20 | GND     | PWR  | -       | -           |      |
|      | -           |         | IOT  | GPIO8      | 21 | 22 | GPIO9   | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO10     | 23 | 24 | GPIO11  | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO12     | 25 | 26 | GPIO13  | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO14     | 27 | 28 | GPIO15  | IOT  |         | -           |      |
|      | -           |         | IOT  | GPIO16     | 29 | 30 | GPIO17  | IOT  |         | -           |      |
|      | -           | -       | PWR  | GND        | 31 | 32 | GND     | PWR  | -       | -           |      |
|      | -           | 8/8mA   | 0    | EGCLK      | 33 | 34 | EGCS#   | 0    | 8/8mA   | -           |      |
|      | -           | 8/8mA   |      | EGAD       | 35 | 36 | TMA0    | 0    |         |             |      |
|      | -           |         | PWR  | +12V       | 37 | 38 | GND     | PWR  | -       | -           |      |
|      | -           |         | 0    | FAN4OUT    | 39 | 40 | FAN4IN  | I    | -       | -           |      |
|      | -           | -       | PWR  | GND        | 41 | 42 | GND     | PWR  | -       | -           |      |
|      | -           | -       | PWR  | GND        | 43 | 44 | S3#     | 0    | 25/25mA | -           |      |

Notes: 1. Pull-up to +3V3Dual (+3V3 or SB3V3). 2. Pull-up to on-board Battery. 3. Pull-up to +3V3.

| Signal     | Description                                                                                                                                                                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CASE_OPEN# | CASE OPEN, used to detect if the system case has been opened. This signal's status is readable, so it may be used like a GPI when the Intruder switch is not required.                                                                                               |
| SMBC       | SMBus Clock signal                                                                                                                                                                                                                                                   |
| SMBD       | SMBus Data signal                                                                                                                                                                                                                                                    |
| S3#        | S3 sleep mode, active low output, optionally used to deactivate external system.                                                                                                                                                                                     |
| S5#        | S5 sleep mode, active low output, optionally used to deactivate external system.                                                                                                                                                                                     |
| PWR_OK     | PoWeR OK, signal is high if no power failures are detected. (This is not the same as the P_OK signal generated by ATX PSU).                                                                                                                                          |
| EXT_BAT    | (EXTernal BATtery) option for connecting + terminal of an external primary cell battery (2.5 - 4.0 V) ( – terminal connected to GND etc. pin 20). The external battery is protected against charging and can be used with or without the on-board battery installed. |
| FAN3OUT    | FAN 3 speed control OUTput, 3.3V PWM signal can be used as Fan control voltage.                                                                                                                                                                                      |
| FAN3IN     | FAN3 Input. 0V to +3V3 amplitude Fan 3 tachometer input.                                                                                                                                                                                                             |
| FAN4OUT    | FAN 4 speed control OUTput, 3.3V PWM signal can be used as Fan control voltage.                                                                                                                                                                                      |
| FAN4IN     | FAN4 Input. 0V to +3V3 amplitude Fan 3 tachometer input.                                                                                                                                                                                                             |
| SB3V3      | Max. load is 0.75A (1.5A < 1 sec.)                                                                                                                                                                                                                                   |
| SB5V       | StandBy +5V supply.                                                                                                                                                                                                                                                  |
| GPI0017    | General Purpose Inputs / Output. These Signals may be controlled or monitored through the use of the KT-API-V2 (Application Programming Interface).                                                                                                                  |
| EGCLK      | Extend GPIO Clock signal                                                                                                                                                                                                                                             |
| EGAD       | Extend GPIO Address Data signal                                                                                                                                                                                                                                      |
| EGCS#      | Extend GPIO Chip Select signal, active low                                                                                                                                                                                                                           |
| TMA0       | Timer Output                                                                                                                                                                                                                                                         |
| +12V       | Max. load is 0.75A (1.5A < 1 sec.)                                                                                                                                                                                                                                   |

#### GPIO in more details.

The GPIO's are controlled via the ITE IT8516F Embedded Controller. Each GPIO has 100pF to ground, clamping Diode to 3V3 and has multiplexed functionality. Some pins can be DAC (Digital to Analogue Converter output), PWM (Pulse Width Modulated signal output), ADC (Analogue to Digital Converter input), TMRI (Timer Counter Input), WUI (Wake Up Input), RI (Ring Indicator Input) or some special function.

| Signal | IT8516F pin name       | Туре         | +5V tolerant | Description |
|--------|------------------------|--------------|--------------|-------------|
| GPIO0  | DAC0/GPJ0              | AO/IOS       | No           |             |
| GPIO1  | DAC1/GPJ1              | AO/IOS       | No           |             |
| GPIO2  | DAC2/GPJ2              | AO/IOS       | No           |             |
| GPIO3  | DAC3/GPJ3              | AO/IOS       | No           |             |
| GPIO4  | PWM2/GPA2              | O8/IOS       | Yes          |             |
| GPIO5  | PWM3/GPA3              | O8/IOS       | Yes          |             |
| GPIO6  | PWM4/GPA4              | O8/IOS       | Yes          |             |
| GPIO7  | PWM5/GPA5              | O8/IOS       | Yes          |             |
| GPIO8  | ADC0/GPI0              | AI/IOS       | No           |             |
| GPIO9  | ADC1/GPI1              | AI/IOS       | No           |             |
| GPIO10 | ADC2/GPI2              | AI/IOS       | No           |             |
| GPIO11 | ADC3/GPI3              | AI/IOS       | No           |             |
| GPIO12 | ADC4/WUI28/GPI4        | AI/IS/IOS    | No           |             |
| GPIO13 | RI1#/WUI0/GPD0         | IS/IS/IOS    | Yes          |             |
| GPIO14 | RI2#/WUI1/GPD1         | IS/IS/IOS    | Yes          |             |
| GPIO15 | TMRI0/WUI2/GPC4        | IS/IS/IOS    | Yes          |             |
| GPIO16 | TMRI1/WUI3/GPC6        | IS/IS/IOS    | Yes          |             |
| GPIO17 | L80HLAT/BAO/WUI24/GPE0 | O4/O4/IS/IOS | Yes          |             |

## 6.13 Clear CMOS Jumper (J37)

The Clear-CMOS Jumper (J37) is used to clear the CMOS content.



| Jä     | 37     |                                                              |
|--------|--------|--------------------------------------------------------------|
| pin1-2 | pin2-3 | Description                                                  |
| Χ      | -      | Clear CMOS data                                              |
| -      | Χ      | Default positions                                            |
| -      | -      | Secure CMOS function is disabled and Default values are used |



**Warning**: Don't leave the jumper in position 1-2, otherwise the battery will fully depleted within a few weeks if power is disconnected.

To clear CMOS settings, including Password protection, move the Clear CMOS jumper to pin 1-2 for a few seconds (~10 sec) (works with or without power connected to the system).

To disable the Secure CMOS function (selected in BIOS), remove the jumper completely from J37.

Leave the Jumper in position 2-3 (default position).

### 6.14 SPI Recover Jumper (J4)

The SPI Recover Jumper is used to select BIOS Recovery SPI Flash instead of the BIOS Default SPI Flash.

Normally Jumper is not installed and board boots on the BIOS Default SPI Flash.

Only in case the Default BIOS gets corrupted (board do not boot), then turn off power, install Jumper (J4) and try rebooting.

After rebooting, remove the Jumper before Default BIOS is recovered by reloading BIOS (for instance by using latest BIOS upgrade package from web product page).



**Warning**: If the jumper (J4) is mounted and you make BIOS Upgrade etc. then the BIOS Recovery SPI Flash will be Upgraded and not the BIOS Default SPI Flash. This means that in case something goes wrong (power interruption or incorrect BIOS package used etc.) when Upgrading BIOS, then the BIOS Recovery SPI Flash might get corrupted.

Verify that Default BIOS has been recovered by making a successful reboot.

### 6.15 SPI Connector (SPI) (J5)

The SPI Connector is normally not used. If however a SPI BIOS is connected via the SPI Connector then the board will try to boot on it.

|   | Note | Pull U/D | loh/lol | Type | Signal | P | IN | Signal  | Type | loh/lol | Pull U/D | Note |
|---|------|----------|---------|------|--------|---|----|---------|------|---------|----------|------|
|   |      | -        |         |      | CLK    | 1 | 2  | SB3V3   | PWR  | -       | -        |      |
|   |      | -        |         | I    | CS0#   | 3 | 4  | ADDIN   | Ю    |         | /10K     |      |
| I |      | 10K/     |         | I    | CS1#   | 5 | 6  | NC      | -    | -       | -        |      |
| I |      | 10K/     |         | I    | MOSI   | 7 | 8  | ISOLATE | Ю    |         | /10K     |      |
|   |      | -        |         | 0    | MISO   | 9 | 10 | GND     | PWR  | -       | -        |      |

## 6.16 XDP-CPU (Debug Port for CPU) (J32)

The XDP-CPU (Intel Debug Port for CPU) connector is not mounted and not supported. XDP connector layout (pads) is located on the backside of PCB and is prepared for the Molex 52435-2671 (or 52435-2672).

| Pin | Signal   | Description | Туре | Pull Up/Down | Note                       |
|-----|----------|-------------|------|--------------|----------------------------|
| 1   | OBSFN_A0 |             |      |              |                            |
| 2   | OBSFN_A1 |             |      |              |                            |
| 3   | GND      |             | PWR  | -            |                            |
| 4   | NC       |             | NC   | -            |                            |
| 5   | NC       |             | NC   | -            |                            |
| 6   | GND      |             | PWR  | -            |                            |
| 7   | NC       |             | NC   | -            |                            |
| 8   | NC       |             | NC   | -            |                            |
| 9   | GND      |             | PWR  | -            |                            |
| 10  | HOOK0    |             |      |              |                            |
| 11  | HOOK1    |             |      |              |                            |
| 12  | HOOK2    |             |      |              |                            |
| 13  | HOOK3    |             |      |              |                            |
| 14  | HOOK4    |             |      |              |                            |
| 15  | HOOK5    |             |      |              |                            |
| 16  | +5V      |             | PWR  | -            |                            |
| 17  | HOOK6    |             |      |              |                            |
| 18  | HOOK7    |             |      | 500R         | (500R by 2x1K in parallel) |
| 19  | GND      |             | PWR  | -            |                            |
| 20  | TDO      |             |      | /51R         |                            |
| 21  | TRST#    |             |      | /51R         |                            |
| 22  | TDI      |             |      | /51R         |                            |
| 23  | TMS      |             |      | /51R         |                            |
| 24  | NC       |             | NC   | -            |                            |
| 25  | GND      |             | PWR  | -            |                            |
| 26  | TCK0     |             |      | /51R         |                            |

## 6.17 XDP-PCH (Debug Port for Chipset) (J33)

The XDP-PCH (Intel Debug Port for Chipset) connector is not mounted and not supported. XDP-PCH connector layout (pads) is located on the backside of PCB (below J35 connector on mITX version) and is prepared for the Molex 52435-2671 (or 52435-2672).

| Pin | Signal | Description | Туре | Pull Up/Down | Note                       |
|-----|--------|-------------|------|--------------|----------------------------|
| 1   | NC     |             | NC   | -            |                            |
| 2   | NC     |             | NC   | -            |                            |
| 3   | GND    |             | PWR  | -            |                            |
| 4   | NC     |             | NC   | -            |                            |
| 5   | NC     |             | NC   | -            |                            |
| 6   | GND    |             | PWR  | -            |                            |
| 7   | NC     |             | NC   | -            |                            |
| 8   | NC     |             | NC   | -            |                            |
| 9   | GND    |             | PWR  | -            |                            |
| 10  | HOOK0  | RSMRST#     |      |              | Connected to HOOK6         |
| 11  | HOOK1  | PWRBTN#     |      |              |                            |
| 12  | HOOK2  |             | NC   | -            |                            |
| 13  | HOOK3  |             | NC   | -            |                            |
| 14  | HOOK4  |             | NC   | -            |                            |
| 15  | HOOK5  |             | NC   | -            |                            |
| 16  | +5V    |             | PWR  | -            |                            |
| 17  | HOOK6  |             |      |              | Connected to HOOK1         |
| 18  | HOOK7  | RESET#      |      | 500R         | (500R by 2x1K in parallel) |
| 19  | GND    |             | PWR  | -            |                            |
| 20  | TDO    |             |      | 210R/100R    |                            |
| 21  | TRST#  |             |      |              |                            |
| 22  | TDI    |             |      | 210R/100R    |                            |
| 23  | TMS    |             |      | 210R/100R    |                            |
| 24  | NC     |             | NC   | -            |                            |
| 25  | GND    |             | PWR  | -            |                            |
| 26  | TCK0   |             |      | /51R         |                            |

## 7 Slot Connectors (PCIe, miniPCIe, PCI)

#### 7.1 PCle Connectors

All members of the KTQM67 family supports one (x16) (16-lane) PCI Express port, one x1 PCI Express port and two miniPCI Express ports.

The **16-lane (x16) PCI Express** (PCIe 2.0) port can be used for external PCI Express cards inclusive graphics card. It is located nearest the CPU. Maximum theoretical bandwidth using 16 lanes is 16 GB/s.

The two **miniPCle** (PCle 2.0) is located on the backside of the board.

The 1-lane (x1) PCI Express (PCIe 2.0) can be used for any PCIex1 cards inclusive "Riser PCIex1 to PCI Dual flexible card".

#### 7.1.1 PCI-Express x16 Connector (PCIe x16)

| Note | Туре | Signal     | Р    | IN    | Signal        | Туре | Note |
|------|------|------------|------|-------|---------------|------|------|
|      |      | +12V       | B1   | A1    | NC            |      |      |
|      |      | +12V       | B2   | A2    | +12V          |      |      |
|      |      | +12V       | В3   | А3    | +12V          |      |      |
|      |      | GND        | B4   | A4    | GND           |      |      |
|      |      | SMB_CLK    | B5   | A5    | NC            |      |      |
|      |      | SMB_DATA   | B6   | A6    | NC            |      |      |
|      |      | GND        | B7   | A7    | NC            |      |      |
|      |      | +3V3       | B8   | A8    | NC            |      |      |
|      |      | NC         | B9   | A9    | +3V3          |      |      |
|      |      | SB3V3      | B10  | A10   | +3V3          |      |      |
|      |      | WAKE#      | B11_ | _ A11 | RST#          |      |      |
|      |      |            |      |       |               |      |      |
|      |      | NC         | B12  | A12   | GND           |      |      |
|      |      | GND        | B13  | A13   | PCIE_x16 CLK  |      |      |
|      |      | PEG_TXP[0] | B14  | A14   | PCIE_x16 CLK# |      |      |
|      |      | PEG_TXN[0] | B15  | A15   | GND           |      |      |
|      |      | GND        | B16  | A16   | PEG_RXP[0]    |      |      |
|      |      | CLKREQ     | B17  | A17   | PEG_RXN[0]    |      |      |
|      |      | GND        | B18  | A18   | GND           |      |      |
|      |      | PEG_TXP[1] | B19  | A19   | NC            |      |      |
|      |      | PEG_TXN[1] | B20  | A20   | GND           |      |      |
|      |      | GND        | B21  | A21   | PEG_RXP[1]    |      |      |
|      |      | GND        | B22  | A22   | PEG_RXN[1]    |      |      |
|      |      | PEG_TXP[2] | B23  | A23   | GND           |      |      |
|      |      | PEG_TXN[2] | B24  | A24   | GND           |      |      |
|      |      | GND        | B25  | A25   | PEG_RXP[2]    |      |      |
|      |      | GND        | B26  | A26   | PEG_RXN[2]    |      |      |
|      |      | PEG_TXP[3] | B27  | A27   | GND           |      |      |
|      |      | PEG_TXN[3] | B28  | A28   | GND           |      |      |
|      |      | GND        | B29  | A29   | PEG_RXP[3]    |      |      |
|      |      | NC         | B30  | A30   | PEG_RXN[3]    |      |      |
|      |      | CLKREQ     | B31  | A31   | GND           |      |      |
|      |      | GND        | B32  | A32   | NC            |      |      |
|      |      | PEG_TXP[4] | B33  | A33   | NC            |      |      |
|      |      | PEG_TXN[4] | B34  | A34   | GND           |      |      |
|      |      | GND        | B35  | A35   | PEG_RXP[4]    |      |      |

| OND         | Doo | 400 | DEC DVALE   |  |
|-------------|-----|-----|-------------|--|
| GND         | B36 | A36 | PEG_RXN[4]  |  |
| PEG_TXP[5]  | B37 | A37 | GND         |  |
| PEG_TXN[5]  | B38 | A38 | GND         |  |
| GND         | B39 | A39 | PEG_RXP[5]  |  |
| GND         | B40 | A40 | PEG_RXN[5]  |  |
| PEG_TXP[6]  | B41 | A41 | GND         |  |
| PEG_TXN[6]  | B42 | A42 | GND         |  |
| GND         | B43 | A43 | PEG_RXP[6]  |  |
| GND         | B44 | A44 | PEG_RXN[6]  |  |
| PEG_TXP[7]  | B45 | A45 | GND         |  |
| PEG_TXN[7]  | B46 | A46 | GND         |  |
| GND         | B47 | A47 | PEG_RXP[7]  |  |
| CLKREQ      | B48 | A48 | PEG_RXN[7]  |  |
| GND         | B49 | A49 | GND         |  |
| PEG_TXP[8]  | B50 | A50 | NC          |  |
| PEG_TXN[8]  | B51 | A51 | GND         |  |
| GND         | B52 | A52 | PEG_RXP[8]  |  |
| GND         | B53 | A53 | PEG_RXN[8]  |  |
| PEG_TXP[9]  | B54 | A54 | GND         |  |
| PEG_TXN[9]  | B55 | A55 | GND         |  |
| GND         | B56 | A56 | PEG_RXP[9]  |  |
| GND         | B57 | A57 | PEG_RXN[9]  |  |
| PEG_TXP[10] | B58 | A58 | GND         |  |
| PEG_TXN[10] | B59 | A59 | GND         |  |
| GND         | B60 | A60 | PEG_RXP[10] |  |
| GND         | B61 | A61 | PEG_RXN[10] |  |
| PEG_TXP[11] | B62 | A62 | GND         |  |
| PEG_TXN[11] | B63 | A63 | GND         |  |
| GND         | B64 | A64 | PEG_RXP[11] |  |
| GND         | B65 | A65 | PEG_RXN[11] |  |
| PEG_TXP[12] | B66 | A66 | GND         |  |
| PEG_TXN[12] | B67 | A67 | GND         |  |
| GND         | B68 | A68 | PEG_RXP[12] |  |
| GND         | B69 | A69 | PEG_RXN[12] |  |
| PEG_TXP[13] | B70 | A70 | GND         |  |
| PEG_TXN[13] | B71 | A71 | GND         |  |
| GND         | B72 | A72 | PEG_RXP[13] |  |
| GND         | B73 | A73 | PEG_RXN[13] |  |
| PEG_TXP[14] | B74 | A74 | GND         |  |
| PEG_TXN[14] | B75 | A75 | GND         |  |
| GND         | B76 | A76 | PEG_RXP[14] |  |
| GND         | B77 | A77 | PEG_RXN[14] |  |
| PEG_TXP[15] | B78 | A78 | GND         |  |
| PEG_TXN[15] | B79 | A79 | GND         |  |
| GND         | B80 | A80 | PEG_RXP[15] |  |
| CLKREQ      | B81 | A81 | PEG_RXN[15] |  |
| NC          | B82 | A82 | GND         |  |
|             |     |     |             |  |

### 7.1.2 miniPCI-Express mPCle0 (J34)

The miniPCI Express port mPCIe0 is located on the backside.

Beside miniPCle cards the mPCle0 also supports mSATA SSD cards.



| Note | Туре | Signal         | Р  | IN | Signal     | Type | Note |
|------|------|----------------|----|----|------------|------|------|
|      |      | WAKE#          | 1  | 2  | +3V3       | PWR  |      |
|      | NC   | NC             | 3  | 4  | GND        | PWR  |      |
|      | NC   | NC             | 5  | 6  | +1.5V      | PWR  |      |
| 1    |      | CLKREQ#        | 7  | 8  | NC         | NC   |      |
|      | PWR  | GND            | 9  | 10 | NC         | NC   |      |
|      |      | PCIE_mini CLK# | 11 | 12 | NC         | NC   |      |
|      |      | PCIE_mini CLK  | 13 | 14 | NC         | NC   |      |
|      | PWR  | GND            | 15 | 16 | NC         | NC   |      |
|      |      |                |    |    |            |      |      |
|      | NC   | NC             | 17 | 18 | GND        | PWR  |      |
|      | NC   | NC             | 19 | 20 | W_Disable# |      | 2    |
|      | PWR  | GND            | 21 | 22 | RST#       |      |      |
|      |      | PCIE_RXN       | 23 | 24 | +3V3 Dual  | PWR  |      |
|      |      | PCIE_RXP       | 25 | 26 | GND        | PWR  |      |
|      | PWR  | GND            | 27 | 28 | +1.5V      | PWR  |      |
|      | PWR  | GND            | 29 | 30 | SMB_CLK    |      |      |
|      |      | PCIE_TXN       | 31 | 32 | SMB_DATA   |      |      |
|      |      | PCIE_TXP       | 33 | 34 | GND        | PWR  |      |
|      | PWR  | GND            | 35 | 36 | NC         | NC   |      |
|      | PWR  | GND            | 37 | 38 | NC         | NC   |      |
|      | PWR  | +3V3 Dual      | 39 | 40 | GND        | PWR  |      |
|      | PWR  | +3V3 Dual      | 41 | 42 | NC         | NC   |      |
|      | PWR  | GND            | 43 | 44 | NC         | NC   |      |
|      |      | CLK_MPCIE      | 45 | 46 | NC         | NC   |      |
|      |      | DATA_MPCIE     | 47 | 48 | +1.5V      | PWR  |      |
|      |      | RST_MPCIE#     | 49 | 50 | GND        | PWR  |      |
| 3    |      | SEL_MSATA      | 51 | 52 | +3V3 Dual  | PWR  |      |

Note 1: 10K ohm pull-up to 3V3.

Note 2: 2K2 ohm pull-up to 3V3 Dual.

Note 3: 100K ohm pull-up to 1V8 (S0 mode)

### 7.1.3 miniPCI-Express mPCle1 (J35)

The miniPCI Express port mPCIe1 is located on the backside. (mSATA not supported)

| Note | Туре | Signal         | P  | IN | Signal     | Туре | Note |
|------|------|----------------|----|----|------------|------|------|
|      |      | WAKE#          | 1  | 2  | +3V3       | PWR  |      |
|      | NC   | NC             | 3  | 4  | GND        | PWR  |      |
|      | NC   | NC             | 5  | 6  | +1.5V      | PWR  |      |
| 1    |      | CLKREQ#        | 7  | 8  | NC         | NC   |      |
|      | PWR  | GND            | 9  | 10 | NC         | NC   |      |
|      |      | PCIE_mini CLK# | 11 | 12 | NC         | NC   |      |
|      |      | PCIE_mini CLK  | 13 | 14 | NC         | NC   |      |
|      | PWR  | GND            | 15 | 16 | NC         | NC   |      |
|      |      |                |    |    |            |      |      |
|      | NC   | NC             | 17 | 18 | GND        | PWR  |      |
|      | NC   | NC             | 19 | 20 | W_Disable# |      | 2    |
|      | PWR  | GND            | 21 | 22 | RST#       |      |      |
|      |      | PCIE_RXN       | 23 | 24 | +3V3 Dual  | PWR  |      |
|      |      | PCIE_RXP       | 25 | 26 | GND        | PWR  |      |
|      | PWR  | GND            | 27 | 28 | +1.5V      | PWR  |      |
|      | PWR  | GND            | 29 | 30 | SMB_CLK    |      |      |
|      |      | PCIE_TXN       | 31 | 32 | SMB_DATA   |      |      |
|      |      | PCIE_TXP       | 33 | 34 | GND        | PWR  |      |
|      | PWR  | GND            | 35 | 36 | NC         | NC   |      |
|      | NC   | NC             | 37 | 38 | NC         | NC   |      |
|      | NC   | NC             | 39 | 40 | GND        | PWR  |      |
|      | NC   | NC             | 41 | 42 | NC         | NC   |      |
|      | NC   | NC             | 43 | 44 | NC         | NC   |      |
|      | NC   | NC             | 45 | 46 | NC         | NC   |      |
|      | NC   | NC             | 47 | 48 | +1.5V      | PWR  |      |
|      | NC   | NC             | 49 | 50 | GND        | PWR  |      |
|      | NC   | NC             | 51 | 52 | +3V3       | PWR  |      |

Note 1: 10K ohm pull-up to 3V3 Dual.

Note 2: 2K2 ohm pull-up to 3V3 Dual.

### 7.1.4 PCI-Express x1 Connector (PCIe x1) (J36)

The KTQM67/mITX supports one PCle x1.

| Note | Туре | Signal     | Р   | IN  | Signal     | Туре | Note |
|------|------|------------|-----|-----|------------|------|------|
|      | PWR  | +12V       | B1  | A1  | GND        | PWR  |      |
|      | PWR  | +12V       | B2  | A2  | +12V       | PWR  |      |
|      | PWR  | +12V       | В3  | А3  | +12V       | PWR  |      |
|      | PWR  | GND        | В4  | A4  | GND        | PWR  |      |
|      |      | SMB_CLK    | B5  | A5  | CL_CLK     |      |      |
|      |      | SMB_DATA   | В6  | A6  | CL_RST     |      |      |
|      | PWR  | GND        | В7  | Α7  | SMB_ALERT  |      |      |
|      | PWR  | +3V3       | В8  | A8  | CL_DATA    |      |      |
| 2    |      | JTAG_TEST# | В9  | A9  | +3V3       | PWR  |      |
|      | PWR  | 3V3 Dual   | B10 | A10 | +3V3       | PWR  |      |
|      |      | WAKE#      | B11 | A11 | RST#       |      |      |
|      |      |            |     |     |            |      |      |
|      | NC   | NC         | B12 | A12 | GND        | PWR  |      |
|      | PWR  | GND        | B13 | A13 | PCIE_CLK_P |      |      |
|      |      | PCIE_TXP   | B14 | A14 | PCIE_CLK_N |      |      |
|      |      | PCIE_TXN   | B15 | A15 | GND        | PWR  |      |
|      | PWR  | GND        | B16 | A16 | PCIE_RXP   |      |      |
| 1    |      | CLK_REQ    | B17 | A17 | PCIE_RXN   |      |      |
|      | PWR  | GND        | B18 | A18 | GND        | PWR  |      |

Note 1: 10K ohm pull-up to 3V3 Dual.

Note 2: 4K7 ohm pull-down to GND.

## 7.2 PCI Slot Connectors PCI0 (J45), PCI1 (J48), PCI2 (J49)

KTQM67/Flex support 3 PCI slots and KTQM67/ATXP supports 6 PCI slots.( KTQm67/mITX does not support PCI slots, but optionally PCIex1 to PCI Dual Flexible Riser can be used).

| Note | Туре       | Signal            | Tern<br>S  | ninal<br>C | Signal        | Туре      | Note |
|------|------------|-------------------|------------|------------|---------------|-----------|------|
|      | PWR        | -12V              | F01        | E01        | TRST#         | 0         |      |
|      | 0          | TCK               | F02        | E02        | +12V          | PWR       |      |
|      | PWR        | GND               | F03        | E03        | TMS           | 0         |      |
| NC   | I          | TDO               | F04        | E04        | TDI           | 0         |      |
|      | PWR        | +5V               | F05        | E05        | +5V           | PWR       |      |
|      | PWR        | +5V               | F06        | E06        | INTA#         | - 1       |      |
|      | ı          | INTB#             | F07        | E07        | INTC#         | - 1       |      |
|      | ı          | INTD#             | F08        | E08        | +5V           | PWR       |      |
| NC   | -          | -                 | F09        | E09        | -             | -         | NC   |
| NC   | -          | -                 | F10        | E10        | +5V (I/O)     | PWR       |      |
| NC   | -          | -                 | F11        | E11        | -             | -         | NC   |
|      | PWR        | GND               | F12        | E12        | GND           | PWR       |      |
| NO   | PWR        | GND               | F13        | E13        | GND           | PWR       |      |
| NC   | -          | -                 | F14        | E14        | GNT3#         | OT        |      |
|      | PWR        | GND               | F15        | E15        | RST#          | 0         |      |
|      | 0          | CLKB              | F16        | E16        | +5V (I/O)     | PWR       |      |
|      | PWR        | GND<br>REQ0#      | F17        | E17        | GNT0#         | OT<br>PWR |      |
|      | I<br>PWR   |                   | F18        | E18        | GND<br>PME#   | I         |      |
|      | IOT        | +5V (I/O)<br>AD31 | F19<br>F20 | E19<br>E20 | AD30          | IOT       |      |
|      | IOT        | AD31<br>AD29      | F21        | E20<br>E21 | +3.3V         | PWR       |      |
|      | PWR        | GND               | F22        | E21        | 43.3V<br>AD28 | IOT       |      |
|      | IOT        | AD27              | F23        | E23        | AD26          | IOT       |      |
|      | IOT        | AD27              | F24        | E24        | GND           | PWR       |      |
|      | PWR        | +3.3V             | F25        | E25        | AD24          | IOT       |      |
|      | IOT        | C/BE3#            | F26        | E26        | GNT1#         | OT        |      |
|      | IOT        | AD23              | F27        | E27        | +3.3V         | PWR       |      |
|      | PWR        | GND               | F28        | E28        | AD22          | IOT       |      |
|      | IOT        | AD21              | F29        | E29        | AD20          | IOT       |      |
|      | IOT        | AD19              | F30        | E30        | GND           | PWR       |      |
|      | PWR        | +3.3V             | F31        | E31        | AD18          | IOT       |      |
|      | IOT        | AD17              | F32        | E32        | AD16          | IOT       |      |
|      | IOT        | C/BE2#            | F33        | E33        | +3.3V         | PWR       |      |
|      | PWR        | GND               | F34        | E34        | FRAME#        | IOT       |      |
|      | IOT        | IRDY#             | F35        | E35        | GND           | PWR       |      |
|      | PWR        | +3.3V             | F36        | E36        | TRDY#         | IOT       |      |
|      | IOT        | DEVSEL#           | F37        | E37        | GND           | PWR       |      |
|      | PWR        | GND               | F38        | E38        | STOP#         | IOT       |      |
|      | IOT        | LOCK#             | F39        | E39        | +3.3V         | PWR       |      |
|      | IOT        | PERR#             | F40        | E40        | SDONE         | 10        |      |
|      | PWR        | +3.3V             | F41        | E41        | SB0#          | 10        |      |
|      | IOC        | SERR#             | F42        | E42        | GND           | PWR       |      |
|      | PWR        | +3.3V             | F43        | E43        | PAR           | IOT       |      |
|      | IOT        | C/BE1#<br>AD14    | F44        | E44        | AD15          | IOT       |      |
|      | IOT<br>PWR |                   | F45        | E45        | +3.3V         | PWR       |      |
|      | IOT        | GND<br>AD12       | F46        | E46        | AD13<br>AD11  | IOT       |      |
|      | IOT        | AD12<br>AD10      | F47<br>F48 | E47<br>E48 | GND           | PWR       |      |
|      | PWR        | GND               | F49        | E49        | AD09          | IOT       |      |
| 9    | OLDER      |                   | 149        | L49        | COMPO         | _         | SIDE |
|      | IOT        | AD08              | F52        | E52        | C/BE0#        | IOT       |      |
|      | IOT        | AD07              | F53        | E53        | +3.3V         | PWR       |      |
|      | PWR        | +3.3V             | F54        | E54        | AD06          | IOT       |      |
|      | IOT        | AD05              | F55        | E55        | AD04          | IOT       |      |
|      | IOT        | AD03              | F56        | F56        | GND           | PWR       |      |
|      | PWR        | GND               | F57        | E57        | AD02          | IOT       |      |
|      | IOT        | AD01              | F58        | E58        | AD00          | IOT       |      |
|      | PWR        | +5V (I/O)         | F59        | E59        | +5V (I/O)     | PWR       |      |
|      | IOT        | ACK64#            | F60        | E60        | REQ64#        | IOT       |      |
|      | PWR        | +5V               | F61        | E61        | +5V           | PWR       |      |
|      | PWR        | +5V               | F62        | E62        | +5V           | PWR       |      |
|      |            |                   |            |            |               |           |      |

## 7.2.1 Signal Description – PCI Slot Connector

| signals, except RST#, INTA#, INTB#, INTC#, and INTD#, are sampled on the risingedge of CLK and all other timing parameters are defined with respect to this edge. PCI operates at 33MHz.  RST# Power Management Event interrupt signal. Wake up signal.  Reset is used to bring PCI-specific registers, sequencers, and signals to a consistent state. Whe effect RST# has on a device beyond the PCI sequencer is beyond the scope of this specification except for reset states of required PCI configuration registers. Anytime RST# is asserted, all PCI output signals must be driven to when the price is the power of the saynchronously tri-stated. SER## (open drain) is floated. REC# and GNT# must be be in-stated (they carnot be driven low or high during reset). To prevent AD, CRE##, and PAR stgnaff, and Interest of loading the device high.  RST# may be asynchronous to CLK when asserted or deasserted. Although asynchronous to CLK when asserted or deasserted. Although asynchronous devices that are required to boot the system will respond after reset.  ADDRESS AND DATA  AD[31::00] Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase is the clock cycle in which FRAME## asserted. During the address phase is the clock cycle in which FRAME## is asserted. During the address phase is the clock cycle in which FRAME## is asserted. During the address phase followed by one or more data phases. PCI supports both read and write bursts.  The address phase is the clock cycle in which FRAME## is asserted. During the address phase followed by contain a physicial address (22 bits). For I/O, this is a byte address; for configuration and memory, it is a DWORD address. During data phases AD[07::00] contain the least significant byte (isb) and AD[31::00] contain a physicial address (32 bits). For I/O, this is a subject and the stable and valid when TRDY## is asserted. Data is transaction. CRE[3::0]## are used as Byte Enables. The Byte Enables are multiplexed on the same PCI pins. During the address phase i | SYSTEM PI   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset is used to bring PCI-specific registers, sequencers, and signals to a consistent state. Wha effect RST# has on a device beyond the PCI sequencer is beyond the scope of this specification except for reset states of required PCI configuration registers. Anytime RST# is asserted, all PC output signals must be driven to their benign state. In general, this means they must be asynchronously in-stated. SERR# (open drain) is floated. RED® and GNT# must both be thi-stated (they cannot be driven low or high during reset). To prevent AD, C/BE#, and PAR signals from floating during reset, the central resource may drive these lines during reset (bus parking) but only it a logic low level—they may not be driven high.  RST# may be asynchronous to CLK when asserted or deasserted. Although asynchronous deassertion is guaranteed to be a clean, bounce-free edge. Except for configuration accesses, only devices that are required to boot the system will respond after reset.  ADDRESS AND DATA  ADJRISS A | CLK         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| effect RST# has on a device beyond the PCI sequencer is beyond the scope of this specification except for reset states of required PCI configuration registers. Anytime RST# is asserted, all PC output signals must be driven to their benign state. In general, this means they must be asynchronously tri-stated. SERR# (open drain) is floated. REC# and GNT# must both be thi-stated (they cannot be driven low or high during reset). To prevent AD, C/BE#, and PAR signals from floating during reset, the central resource may drive these lines during reset (bus parking) but only, to a logic low level—they may not be driven high.  RST# may be asynchronous to CLK when asserted or deasserted. Although asynchronous deassertion is guaranteed to be a clean, bounce-free edge. Except for configuration accesses, only devices that are required to boot the system will respond after reset.  ADDRESS AND DATA  AD[31::00]  Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. PCI supports both read and write bursts. The address phase is the clock cycle in which FRAME# is asserted. During the address phase AD[31::00] contain a physical address (22 bits). For I/O, this is a byte address; for configuration and memory, it is a DWORD address. During data phases AD[07::00] contain the least significant byte (list) and AD[31::24] contain the most significant byte (msb). Write data is stable and valid wher IRDY# is asserted. Data is transaction, CDE[32:0]# and TRDY# are asserted.  C/BE[3:0]#  Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase o at transaction, CDE[32:0]# define the bus command. During the data phase C/BE[3:0]# acres used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lane are acres to the same policy and transaction. CDE[3:0]# acres and acre | PME#        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ADIRESS AND DATA  ADIS1::00]  Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. PCI supports both read and write bursts.  The address phase is the clock cycle in which FRAME# is asserted. During the address phase ADIS1::00] contain a physical address (32 bits). For 100, this is a byte address; for configuration and memory, it is a DWORD address. During data phases ADIO7::00] contain the least significant byte (isb) and ADIS1::24] contain the most significant byte (msb). Write data is stated and valid wher IRDY# is asserted and read data is stable and valid when TRDY# is asserted. Data is transferred during those clocks where both IRDY# and TRDY# are asserted.  C/BE[3::0]# Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, C/BE[5::0]# define the bus command. During the data phase C/BE[3::0]# parties is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parity across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parties across ADIS1::00] and C/BE[3::0]# parties to byte 3 (msb).  PAR Parity is even parties across ADIS1::00] burst as deleased byte address; is asserted to across ADIS1::00].  PAR Parity is even parties across ADIS1::00], bur is deleased byte address and the completion of the current data phase (PAR   | RST#        | effect RST# has on a device beyond the PCI sequencer is beyond the scope of this specification, except for reset states of required PCI configuration registers. Anytime RST# is asserted, all PCI output signals must be driven to their benign state. In general, this means they must be asynchronously tri-stated. SERR# (open drain) is floated. REQ# and GNT# must both be tri-stated (they cannot be driven low or high during reset). To prevent AD, C/BE#, and PAR signals from floating during reset, the central resource may drive these lines during reset (bus parking) but only to a logic low level—they may not be driven high.  RST# may be asynchronous to CLK when asserted or deasserted. Although asynchronous, deassertion is guaranteed to be a clean, bounce-free edge. Except for configuration accesses, only |
| AD[31::00] Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. PCI supports both read and write bursts.  The address phase is the clock cycle in which FRAME# is asserted. During the address phase AD[31::00] contain a physical address (32 bits). For I/O, this is a byte address; for configuration and memory, it is a DWORD address. During data phases AD[07::00] contain the least significant byte (isb) and AD[31::24] contain the most significant byte (msb). Write data is stable and valid wher IRD7# is asserted. During have a saserted and read data is stable and valid wher IRD7# is asserted. Data is transferred during those clocks where both IRD7# and TRD7# are asserted.  C/BE[3::0]#  C/BE[3::0]#  C/BE[3::0]#  Sus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase o a transaction. C/BE[3::0]# define the bus command. During the data phase and determine which byte lanes carry meaningful data. C/BE[0]# applies to byte 0 (isb) and C/BE[3::0]# applies to byte 3 (imsb).  PAR  Parity is even parity across AD[31::00] and C/BE[3::0]#. Parity generation is required by all PC agents. PAR is stable and valid one clock after the address phase. For data phases. PAR is stable and valid one clock after the address phase. For data phases. PAR is stable and valid one clock after the address phase. For data phases. PAR is stable and valid one dock after either IRD7# is asserted on a write transaction or TRD7# is asserted to read transaction. Once PAR is valid, it remains valid until one clock after the completion of the current data phase. (PAR has the same timing as AD[31::00], but it is delayed by one clock.) The maste of the variety of the part of the current data phase of the transaction. IRD7# is used in conjunction with IRD7#. A data phase is completed or any clock both IRD7# and Indicate a bus transaction is beginning. While FRAME# is asserted, data is present on AD[31::00]. During a read, it indicates the | ADDRESS A   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a transaction, C/BE[3::0]# define the bus command. During the data phase C/BE[3::0]# are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data. C/BE[0]# applies to byte 0 (lsb) and C/BE[3]# applies to byte 3 (msb).  PAR  Parity is even parity across AD[31::00] and C/BE[3::0]#. Parity generation is required by all PC agents. PAR is stable and valid one clock after the address phase. For data phases, PAR is stable and valid one clock after the address phase. For data phases, PAR is stable and valid one clock after either IRDY# is asserted on a write transaction or TRDY# is asserted on a read transaction. Once PAR is valid, it remains valid until one clock after the completion of the curren data phase. (PAR has the same timing as AD[31::00], but it is delayed by one clock.) The maste drives PAR for address and write data phases; the target drives PAR for read data phases.  INTERFACE CONTROL PINS  FRAME#  FRAME# System is driven by the current master to indicate the beginning and duration of an access FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has completed.  IRDY#  Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. IRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD[31::00]. During a read, it indicates the master is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  TRDY#  Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept data. Wai cycles are inserted until both IRDY# are sampled asserted. During a read, | 1           | Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. PCI supports both read and write bursts. The address phase is the clock cycle in which FRAME# is asserted. During the address phase AD[31::00] contain a physical address (32 bits). For I/O, this is a byte address; for configuration and memory, it is a DWORD address. During data phases AD[07::00] contain the least significant byte (Isb) and AD[31::24] contain the most significant byte (msb). Write data is stable and valid when IRDY# is asserted and read data is stable and valid when TRDY# is asserted. Data is transferred during those clocks where both IRDY# and TRDY# are asserted.                                                                                    |
| agents. PAR is stable and valid one clock after the address phase. For data phases, PAR is stable and valid one clock after either IRDY# is asserted on a write transaction or TRDY# is asserted on read transaction. Once PAR is valid, it remains valid until one clock after the completion of the curren data phase. (PAR has the same timing as AD[31::00], but it is delayed by one clock.) The maste drives PAR for raddress and write data phases; the target drives PAR for read data phases.  INTERFACE CONTROL PINS  Cycle Frame is driven by the current master to indicate the beginning and duration of an access FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has completed.  IRDY# Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed or any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD[31::00]. During a read, it indicates the master is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  TRDY# Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed or any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  STOP# Stop indicates the current target is requesting the master to stop the current transaction.  Lock# Lock indicates an atomic operation that may require multiple transactions to complete. When LOCk# is asserted, non-exclusive transactions may proceed to an address that is not currently lo | C/BE[3::0]# | Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, C/BE[3::0]# define the bus command. During the data phase C/BE[3::0]# are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data. C/BE[0]# applies to byte 0 (lsb) and C/BE[3]# applies to byte 3 (msb).                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FRAME# is asserted to indicate a bus transaction is beginning and duration of an access FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has completed.  IRDY# Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed or any clock both IRDY# and TRDY# are asserted. During a write, IRDY# indicates that valid data is present on AD[31::00]. During a read, it indicates the master is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  TRDY# Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed or any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  STOP# Stop indicates the current target is requesting the master to stop the current transaction.  Lock# Lock indicates an atomic operation that may require multiple transactions to complete. When LOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under its own protocol in conjunction with GNT#. It is possible for different agents to use PCI while a single master retains ownership of LOCK#. If a device implements Executable Memory, is should also implement LOCK# and guarantee complete access exclusion in that memory. A target of an access that supports LOCK# must provide exclusion to a minimum of 16 bytes (aligned). Hos bridges that have system memory behind | PAR         | Parity is even parity across AD[31::00] and C/BE[3::0]#. Parity generation is required by all PCI agents. PAR is stable and valid one clock after the address phase. For data phases, PAR is stable and valid one clock after either IRDY# is asserted on a write transaction or TRDY# is asserted on a read transaction. Once PAR is valid, it remains valid until one clock after the completion of the current data phase. (PAR has the same timing as AD[31::00], but it is delayed by one clock.) The master drives PAR for address and write data phases; the target drives PAR for read data phases.                                                                                                                                                                                                                              |
| FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has completed.  IRDY# Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed or any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD[31::00]. During a read, it indicates the master is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  TRDY# Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed or any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  STOP# Stop indicates the current target is requesting the master to stop the current transaction.  LOCK# Lock indicates an atomic operation that may require multiple transactions to complete. When LOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under its own protocol in conjunction with GNT#. It is possible for different agents to use PCI while a single master retains ownership of LOCK#. If a device implements Executable Memory, is should also implement LOCK# and guarantee complete access exclusion in that memory. A target of an access that supports LOCK# must provide exclusion to a minimum of 16 bytes (aligned). Hos bridges that have system memory behind them should implement LOCK# as a target from the PC bus point of view and optio | INTERFACE   | CONTROL PINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed or any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD[31::00]. During a read, it indicates the master is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  TRDY#  Target Ready indicates the target agent's (selected device's) ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed or any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  STOP#  Stop indicates the current target is requesting the master to stop the current transaction.  Lock indicates an atomic operation that may require multiple transactions to complete. When LOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under its own protocol in conjunction with GNT#. It is possible for different agents to use PCI while a single master retains ownership of LOCK#. If a device implements Executable Memory, is should also implement LOCK# and guarantee complete access exclusion in that memory. A target of an access that supports LOCK# must provide exclusion to a minimum of 16 bytes (aligned). Hos bridges that have system memory behind them should implement LOCK# as a target from the PC bus point of view and optionally as a master.  IDSEL  Initialization Device Select is used as a chip select during configuration read and write transactions.  Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on th | FRAME#      | Cycle Frame is driven by the current master to indicate the beginning and duration of an access. FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed or any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31::00]. During a write, it indicates the target is prepared to accept data. Wai cycles are inserted until both IRDY# and TRDY# are asserted together.  STOP#  Stop indicates the current target is requesting the master to stop the current transaction.  Lock indicates an atomic operation that may require multiple transactions to complete. When LOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under its own protocol in conjunction with GNT#. It is possible for different agents to use PCI while a single master retains ownership of LOCK#. If a device implements Executable Memory, i should also implement LOCK# and guarantee complete access exclusion in that memory. A target of an access that supports LOCK# must provide exclusion to a minimum of 16 bytes (aligned). Hos bridges that have system memory behind them should implement LOCK# as a target from the PC bus point of view and optionally as a master.  IDSEL  DEVSEL#  Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IRDY#       | Initiator Ready indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed on any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD[31::00]. During a read, it indicates the master is prepared to accept data. Wait cycles are inserted until both IRDY# and TRDY# are asserted together.                                                                                                                                                                                                                                                                                                                                                        |
| Lock indicates an atomic operation that may require multiple transactions to complete. When LOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under its own protocol in conjunction with GNT#. It is possible for different agents to use PCI while a single master retains ownership of LOCK#. If a device implements Executable Memory, i should also implement LOCK# and guarantee complete access exclusion in that memory. A target of an access that supports LOCK# must provide exclusion to a minimum of 16 bytes (aligned). Hose bridges that have system memory behind them should implement LOCK# as a target from the PC bus point of view and optionally as a master.  IDSEL  Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, Devsel# indicates whether any device on the bus has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRDY#       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| is asserted, non-exclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under its own protocol in conjunction with GNT#. It is possible for different agents to use PCI while a single master retains ownership of LOCK#. If a device implements Executable Memory, is should also implement LOCK# and guarantee complete access exclusion in that memory. A target of an access that supports LOCK# must provide exclusion to a minimum of 16 bytes (aligned). Hose bridges that have system memory behind them should implement LOCK# as a target from the PC bus point of view and optionally as a master.  IDSEL  Initialization Device Select is used as a chip select during configuration read and write transactions.  Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, Devsel# indicates whether any device on the bus has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STOP#       | Stop indicates the current target is requesting the master to stop the current transaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DEVSEL# Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOCK#       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| target of the current access. As an input, DEVSEL# indicates whether any device on the bus has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSEL       | Initialization Device Select is used as a chip select during configuration read and write transactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEVSEL#     | Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has been selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| ARBITRATIO                                                     | ON PINS (BUS MASTERS ONLY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REQ#                                                           | Request indicates to the arbiter that this agent desires use of the bus. This is a point to point signal. Every master has its own REQ# which must be tri-stated while RST# is asserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GNT#                                                           | Grant indicates to the agent that access to the bus has been granted. This is a point to point signal. Every master has its own GNT# which must be ignored while RST# is asserted. While RST# is asserted, the arbiter must ignore all REQ# lines since they are tri-stated and do not contain a valid request. The arbiter can only perform arbitration after RST# is deasserted. A master must ignore its GNT# while RST# is asserted. REQ# and GNT# are tri-state signals due to power sequencing requirements when 3.3V or 5.0V only add-in boards are used with add-in boards that use a universal I/O buffer.                                                                                                                                                                                                                                                                                                    |
| ERROR REF                                                      | PORTING PINS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The error rep                                                  | porting pins are required by all devices and maybe asserted when enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PERR#                                                          | Parity Error is only for the reporting of data parity errors during all PCI transactions except a Special Cycle. The PERR# pin is sustained tri-state and must be driven active by the agent receiving data two clocks following the data when a data parity error is detected. The minimum duration of PERR# is one clock for each data phase that a data parity error is detected. (If sequential data phases each have a data parity error, the PERR# signal will be asserted for more than a single clock.) PERR# must be driven high for one clock before being tri-stated as with all sustained tri-state signals. There are no special conditions when a data parity error may be lost or when reporting of an error may be delayed. An agent cannot report a PERR# until it has claimed the access by asserting DEVSEL# (for a target) and completed a data phase or is the master of the current transaction. |
| SERR#                                                          | System Error is for reporting address parity errors, data parity errors on the Special Cycle command, or any other system error where the result will be catastrophic. If an agent does not want a non-maskable interrupt (NMI) to be generated, a different reporting mechanism is required. SERR# is pure open drain and is actively driven for a single PCI clock by the agent reporting the error. The assertion of SERR# is synchronous to the clock and meets the setup and hold times of all bused signals. However, the restoring of SERR# to the deasserted state is accomplished by a weak pullup (same value as used for s/t/s) which is provided by the system designer and not by the 61signaling agent or central resource. This pull-up may take two to three clock periods to fully restore SERR#. The agent that reports SERR#s to the operating system does so anytime SERR# is sampled asserted.    |
| INTERRUPT                                                      | PINS (OPTIONAL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Interrupts on<br>drivers. The<br>requesting a<br>driver clears | PCI are optional and defined as "level sensitive," asserted low (negative true), using open drain output assertion and deassertion of INTx# is asynchronous to CLK. A device asserts its INTx# line when ttention from its device driver. Once the INTx# signal is asserted, it remains asserted until the device the pending request. When the request is cleared, the device deasserts its INTx# signal. PCI defines the for a single function device and up to four interrupt lines for a multi-function device or connector.                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                | function device, only INTA# may be used while the other three interrupt lines have no meaning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| INTA#                                                          | Interrupt A is used to request an interrupt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INTB#                                                          | Interrupt B is used to request an interrupt and only has meaning on a multi-function device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INTC#                                                          | Interrupt C is used to request an interrupt and only has meaning on a multi-function device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INTD#                                                          | Interrupt D is used to request an interrupt and only has meaning on a multi-function device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### 7.2.2 KTQM67 PCI IRQ & INT routing

| Board type  | Slot | REQ  | GNT  | IDSEL | INTA | INTB | INTC | INTD |
|-------------|------|------|------|-------|------|------|------|------|
| KTQM67/Flex | 0    | REQ0 | GNT0 | 17    | INTA | INTB | INTC | INTD |
|             | 1    | REQ1 | GNT1 | 18    | INTB | INTC | INTD | INTA |
|             | 2    | REQ2 | GNT2 | 19    | INTC | INTD | INTA | INTB |
| KTQM67/ATXP | 0    |      |      |       |      |      |      |      |
|             | 1    |      |      |       |      |      |      |      |
|             | 2    |      |      |       |      |      |      |      |
|             | 3    |      |      |       |      |      |      |      |
|             | 4    |      |      |       |      |      |      |      |
|             | 5    |      |      |       |      |      |      |      |

## 8 On-board - & mating connector types

The Mating connectors / Cables are connectors or cable kits which are fitting the On-board connector. The highlighted cable kits are included in the "KTQM67 Cable & Driver Kit" PN 826598, in different quantities depending on type of connector. For example there is  $4 \times 821017$  COM cables and  $6 \times 821035$  SATA cables.

| Commenter                | On-board     | Connectors      | Mating Connectors / Cables |                                                          |  |  |
|--------------------------|--------------|-----------------|----------------------------|----------------------------------------------------------|--|--|
| Connector                | Manufacturer | Type no.        | Manufacturer               | Type no.                                                 |  |  |
| FAN_CPU                  | Foxconn      | HF2704E-M1      | AMP                        | 1375820-4 (4-pole)                                       |  |  |
| FAN_SYS                  | AMP          | 1470947-1       | AMP                        | 1375820-3 (3-pole)                                       |  |  |
| KBDMSE                   | Molex        | 22-23-2061      | Molex                      | 22-01-2065                                               |  |  |
| KDDIVISE                 |              |                 | Kontron                    | KT 1046-3381                                             |  |  |
| CDROM                    | Foxconn      | HF1104E         | Molex                      | 50-57-9404                                               |  |  |
|                          | Molex        | 70543-0038      |                            |                                                          |  |  |
| SATA                     | Hon Hai      | LD1807V-S52T    | Molex                      | 67489-8005                                               |  |  |
| SATA                     |              |                 | Kontron                    | <b>KT 821035</b> (cable kit)                             |  |  |
| ATXPWR                   | Molex        | 44206-0002      | Molex                      | 5557-24R                                                 |  |  |
| ATX+12V-4pin             | Lotes        | ABA-POW-003-K02 | Molex                      | 39-01-2045                                               |  |  |
| LPT                      | Тусо         | 3-1734592-2     | Kontron                    | KT 1045-9287 (FFC)<br>KT 1045-9290 (FFC)<br>KT 1046-3057 |  |  |
| EDP                      | Тусо         | 5-2069716-3     | Тусо                       | 2023344-3                                                |  |  |
|                          | Don Connex   | C44-40BSB1-G    | Don Connex                 | A32-40-C-G-B-1                                           |  |  |
| LVDS                     |              |                 | Kontron                    | KT 910000005                                             |  |  |
| LVDS                     |              |                 | Kontron                    | <b>KT 821515</b> (cable kit)                             |  |  |
|                          |              |                 | Kontron                    | KT 821155 (cable kit)                                    |  |  |
|                          | Wuerth       | 61201020621     | Molex                      | 90635-1103                                               |  |  |
| COM1,2, 3, 4             |              |                 | Kontron                    | KT 821016 (cable kit)                                    |  |  |
|                          |              |                 | Kontron                    | <b>KT 821017</b> (cable kit)                             |  |  |
| USB68/9,<br>10/11, 12/13 | Pinrex       | 512-90-10GBB2   | Kontron                    | <b>KT 821401</b> (cable kit)                             |  |  |
| USB6/7 (*)               | (FRONTPNL)   | -               | Kontron                    | <b>KT 821401</b> (cable kit)                             |  |  |
| IEEE1394_0/1             | Foxconn      | HS1105F-RNP9    | Kontron                    | <b>KT 821040</b> (cable kit)                             |  |  |
| AUDIO_HEAD               | Molex        | 87831-2620      | Molex                      | 51110-2651                                               |  |  |
|                          |              |                 | Kontron                    | <b>KT 821043</b> (cable kit)                             |  |  |
| FRONTPNL                 | Pinrex       | 512-90-24GBB3   | Molex                      | 90635-1243                                               |  |  |
|                          |              |                 | Kontron                    | <b>KT 821042</b> (cable kit)                             |  |  |
| FEATURE                  | Foxconn      | HS5422F         | Don Connex                 | A05c-44-B-G-A-1-G                                        |  |  |
|                          |              |                 |                            |                                                          |  |  |

<sup>\*</sup> USB6/USB7 is located in FRONTPNL connector. Depending on application KT 821401 can be used.

**Note**: Only one connector will be mentioned for each type of on-board connector even though several types with same fit, form and function are approved and could be used as alternative. Please also notice that standard connectors like DVI, DP, PCIe, miniPCIe, PCI, Audio Jack, Ethernet and USB is not included in the list.

# 9 System Resources

# 9.1 Memory Map

| Address (hex) | Size | Description |
|---------------|------|-------------|
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |
|               |      |             |

## 9.2 PCI Devices

| Bus<br># | Device<br># | Function<br># | Vendor<br>ID | Device<br>ID | Chip | Device Function |
|----------|-------------|---------------|--------------|--------------|------|-----------------|
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |
|          |             |               |              |              |      |                 |

# 9.3 Interrupt Usage

| Intel(R) 82567LM Gigabit Network Connection (x) Microsoft UAA-bus driver for High Definition Aud | Microsoft UAA-bus driver for High Definition Auc | PS2 Mouse                                                                                            | PCI to PCI Express bridge OHCI Compliant IEEE 194 Controller                                     | Notes                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  | Notes                                                                                                                                                                   |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  |                                                  |                                                                                                      |                                                                                                  |                                                                                                                                                                         |
|                                                                                                  | Into I/D 102EGT M Citabit Matural Companion (S)  | Intel(R) 82567LM Gigabit Network Connection (x2)  Microsoft UAA-bus driver for High Definition Audio | Intel(R) 82567LM Gigabit Network Connection (x2 Microsoft UAA-bus driver for High Definition Aud | Intel(R) 82567LM Gigabit Network Connection (x2 Microsoft UAA-bus driver for High Definition Aud PS2 Mouse PCI to PCI Express bridge OHCI Compliant IEEE 194 Controller |

# 9.4 IO Map

|                     | 01   |             |
|---------------------|------|-------------|
| Address range (hex) | Size | Description |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |
|                     |      |             |

## 10 BIOS

This section details specific BIOS features for the KTQM67 family of boards

# 11 AMI BIOS Beep Codes

#### **Boot Block Beep Codes:**

| Number of Beeps | Description                                                                        |
|-----------------|------------------------------------------------------------------------------------|
| 1               | Insert diskette in floppy drive A:                                                 |
| 2               | 'AMIBOOT.ROM' file not found in root directory of diskette in A:                   |
| 3               | Base Memory error                                                                  |
| 4               | Flash Programming successful                                                       |
| 5               | Floppy read error                                                                  |
| 6               | Keyboard controller BAT command failed                                             |
| 7               | No Flash EPROM detected                                                            |
| 8               | Floppy controller failure                                                          |
| 9               | Boot Block BIOS checksum error                                                     |
| 10              | Flash Erase error                                                                  |
| 11              | Flash Program error                                                                |
| 12              | 'AMIBOOT.ROM' file size error                                                      |
| 13              | BIOS ROM image mismatch (file layout does not match image present in flash device) |

#### **POST BIOS Beep Codes:**

| 1 Oo1 Bloo Beep oodes. |                                                               |
|------------------------|---------------------------------------------------------------|
| Number of Beeps        | Description                                                   |
| 1                      | Memory refresh timer error.                                   |
| 2                      | Parity error in base memory (first 64KB block)                |
| 3                      | Base memory read/write test error                             |
| 4                      | Motherboard timer not operational                             |
| 5                      | Processor error                                               |
| 6                      | 8042 Gate A20 test error (cannot switch to protected mode)    |
| 7                      | General exception error (processor exception interrupt error) |
| 8                      | Display memory error (system video adapter)                   |
| 9                      | AMIBIOS ROM checksum error                                    |
| 10                     | CMOS shutdown register read/write error                       |
| 11                     | Cache memory test failed                                      |

#### **Troubleshooting POST BIOS Beep Codes:**

| Number of Beeps | Troubleshooting Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2 or 3       | Reset the memory, or replace with known good modules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4-7, 9-11       | Fatal error indicating a serious problem with the system. Consult your system manufacturer. Before declaring the motherboard beyond "all hope", eliminate the possibility of interference due to a malfunctioning add-in card. Remove all expansion cards, except the video adapter.  • If beep codes are generated when all other expansion cards are absent, consult your system manufacturer's technical support.  • If beep codes are not generated when all other expansion cards are absent, one of the add-in cards is causing the malfunction. Insert the cards back into the system one at a time until the problem happens again. This will reveal the malfunctioning card. |
| 8               | If the system video adapter is an add-in card, replace or reset the video adapter. If the video adapter is an integrated part of the system board, the board may be faulty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 12OS Setup

Use the Setup.exe files for all relevant drivers. The drivers can be found on KTQM67 Driver CD or they can be downloaded from the homepage <a href="http://www.kontron.com/">http://www.kontron.com/</a>